Mostrar el registro sencillo del ítem
dc.contributor.author
Knoll, Wolfgang
dc.contributor.author
Azzaroni, Omar
dc.contributor.author
Duran, Hatice
dc.contributor.author
Kunze Liebhäuser, Julia
dc.contributor.author
Lau, King Hang Aaron
dc.contributor.author
Reimhult, Erik
dc.contributor.author
Yameen, Basit
dc.date.available
2021-09-28T17:38:13Z
dc.date.issued
2020-02-27
dc.identifier.citation
Knoll, Wolfgang; Azzaroni, Omar; Duran, Hatice; Kunze Liebhäuser, Julia; Lau, King Hang Aaron; et al.; Nanoporous thin films in optical waveguide spectroscopy for chemical analytics; Springer Heidelberg; Analytical and Bioanalytical Chemistry; 412; 14; 27-2-2020; 3299-3315
dc.identifier.issn
1618-2642
dc.identifier.uri
http://hdl.handle.net/11336/141739
dc.description.abstract
Spectroscopy with planar optical waveguides is still an active field of research for the quantitative analysis of various supramolecular surface architectures and processes, and for applications in integrated optical chip communication, direct chemical sensing, etc. In this contribution, we summarize some recent development in optical waveguide spectroscopy using nanoporous thin films as the planar substrates that can guide the light just as well as bulk thin films. This is because the nanoporosity is at a spacial length-scale that is far below the wavelength of the guided light; hence, it does not lead to an enhanced scattering or additional losses of the optical guided modes. The pores have mainly two effects: they generate an enormous inner surface (up to a factor of 100 higher than the mere geometric dimensions of the planar substrate) and they allow for the exchange of material and charges between the two sides of the solid thin film. We demonstrate this for several different scenarios including anodized aluminum oxide layers for the ultrasensitive determination of the refractive index of fluids, or the label-free detection of small analytes binding from the pore inner volume to receptors immobilized on the pore surface. Using a thin film of Ti metal for the anodization results in a nanotube array offering an even further enhanced inner surface and the possibility to apply electrical potentials via the resulting TiO2 semiconducting waveguide structure. Nanoporous substrates fabricated from SiNx thin films by colloid lithography, or made from SiO2 by e-beam lithography, will be presented as examples where the porosity is used to allow for the passage of ions in the case of tethered lipid bilayer membranes fused on top of the light-guiding layer, or the transport of protons through membranes used in fuel cell applications. The final example that we present concerns the replication of the nanopore structure by polymers in a process that leads to a nanorod array that is equally well suited to guide the light as the mold; however, it opens a totally new field for integrated optics formats for direct chemical and biomedical sensing with an extension to even molecularly imprinted structures. [Figure not available: see fulltext.]
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Springer Heidelberg
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/
dc.subject
ANODIZATION
dc.subject
CHEMICAL AND BIOSENSING
dc.subject
COLLOID LITHOGRAPHY
dc.subject
E-BEAM LITHOGRAPHY
dc.subject
NANOPOROUS THIN FILMS
dc.subject
OPTICAL WAVEGUIDE SPECTROSCOPY
dc.subject
POLYMER NANOROD ARRAY
dc.subject.classification
Físico-Química, Ciencia de los Polímeros, Electroquímica
dc.subject.classification
Ciencias Químicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Nanoporous thin films in optical waveguide spectroscopy for chemical analytics
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2021-09-06T17:27:00Z
dc.identifier.eissn
1618-2650
dc.journal.volume
412
dc.journal.number
14
dc.journal.pagination
3299-3315
dc.journal.pais
Alemania
dc.journal.ciudad
Heidelberg
dc.description.fil
Fil: Knoll, Wolfgang. Competence Centre for Electrochemical Surface Technology; Austria. Austrian Institute of Technology; Austria
dc.description.fil
Fil: Azzaroni, Omar. Competence Centre for Electrochemical Surface Technology; Austria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina
dc.description.fil
Fil: Duran, Hatice. University of Economics and Technology. Department of Materials Science and Nanotechnology Engineering; Austria
dc.description.fil
Fil: Kunze Liebhäuser, Julia. Universidad de Innsbruck; Austria
dc.description.fil
Fil: Lau, King Hang Aaron. University of Strathclyde; Reino Unido
dc.description.fil
Fil: Reimhult, Erik. University of Natural Resources and Life Sciences. Department of Nanobiotechnology; Austria
dc.description.fil
Fil: Yameen, Basit. Lahore University of Management Sciences. Syed Babar Ali School of Science and Engineering. Department of Chemistry and Chemical Engineering; Pakistán
dc.journal.title
Analytical and Bioanalytical Chemistry
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/10.1007/s00216-020-02452-8
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s00216-020-02452-8
Archivos asociados