Mostrar el registro sencillo del ítem

dc.contributor.author
Mancini, Estefania  
dc.contributor.author
Rabinovich, Andrés  
dc.contributor.author
Iserte, Javier Alonso  
dc.contributor.author
Yanovsky, Marcelo Javier  
dc.contributor.author
Chernomoretz, Ariel  
dc.date.available
2021-09-28T12:01:16Z  
dc.date.issued
2021-03  
dc.identifier.citation
Mancini, Estefania; Rabinovich, Andrés; Iserte, Javier Alonso; Yanovsky, Marcelo Javier; Chernomoretz, Ariel; ASpli: integrative analysis of splicing landscapes through RNA-Seq assays; Oxford University Press; Bioinformatics (Oxford, England); 3-2021; 1-9  
dc.identifier.issn
1367-4803  
dc.identifier.uri
http://hdl.handle.net/11336/141680  
dc.description.abstract
Genome-wide analysis of alternative splicing has been a very active field of research since the early days of Next Generation Sequencing technologies. Since then, ever-growing data availability and the development of increasingly sophisticated analysis methods have uncovered the complexity of the general splicing repertoire. A large number of splicing analysis methodologies exist, each of them presenting its own strengths and weaknesses. For instance methods exclusively relying on junction information do not take advantage of the large majority of reads produced in an RNA-seq assay, isoform reconstruction methods might not detect novel intron retention events, some solutions can only handle canonical splicing events, and many existing methods can only perform pairwise comparisons. In this contribution, we present ASpli, a computational suite implemented in R statistical language, that allows the identification of changes in both, annotated and novel alternative splicing events and can deal with simple, multi-factor or paired experimental designs. Our integrative computational workflow considers the same GLM model, applied to different sets of reads and junctions, in order to compute complementary splicing signals.Analyzing simulated and real data we found that the consolidation of these signals resulted in a robust proxy of the occurrence of splicing alterations. While the analysis of junctions allowed us to uncover annotated as well as non-annotated events, read coverage signals notably increased recall capabilities at a very competitive performance when compared against other state-of-the-art splicing analysis algorithms. ASpli is freely available from the Bioconductor project site https://www.bioconductor.org/packages/ASpli.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Oxford University Press  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
RNASEQ  
dc.subject
ALTERNATIVE SPLICING  
dc.subject.classification
Bioquímica y Biología Molecular  
dc.subject.classification
Ciencias Biológicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
ASpli: integrative analysis of splicing landscapes through RNA-Seq assays  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2021-09-15T15:19:30Z  
dc.identifier.eissn
1367-4811  
dc.journal.pagination
1-9  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Oxford  
dc.description.fil
Fil: Mancini, Estefania. Centro de Regulación Genómica; España. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; Argentina  
dc.description.fil
Fil: Rabinovich, Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; Argentina  
dc.description.fil
Fil: Iserte, Javier Alonso. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; Argentina  
dc.description.fil
Fil: Yanovsky, Marcelo Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; Argentina  
dc.description.fil
Fil: Chernomoretz, Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina  
dc.journal.title
Bioinformatics (Oxford, England)  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/bioinformatics/article-abstract/37/17/2609/6156815  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1093/bioinformatics/btab141