Mostrar el registro sencillo del ítem
dc.contributor.author
Alfano, Gianvincenzo
dc.contributor.author
Greco, Sergio
dc.contributor.author
Parisi, Francesco
dc.contributor.author
Simari, Gerardo
dc.contributor.author
Simari, Guillermo Ricardo
dc.date.available
2021-09-24T13:21:11Z
dc.date.issued
2021-11
dc.identifier.citation
Alfano, Gianvincenzo; Greco, Sergio; Parisi, Francesco; Simari, Gerardo; Simari, Guillermo Ricardo; Incremental computation for structured argumentation over dynamic DeLP knowledge bases; Elsevier Science; Artificial Intelligence; 300; 11-2021; 1-30; 103553
dc.identifier.issn
0004-3702
dc.identifier.uri
http://hdl.handle.net/11336/141459
dc.description.abstract
Structured argumentation systems, and their implementation, represent an important research subject in the area of Knowledge Representation and Reasoning. Structured argumentation advances over abstract argumentation frameworks by providing the internal construction of the arguments that are usually defined by a set of (strict and defeasible) rules. By considering the structure of arguments, it becomes possible to analyze reasons for and against a conclusion, and the warrant status of such a claim in the context of a knowledge base represents the main output of a dialectical process. Computing such statuses is a costly process, and any update to the knowledge base could potentially have a huge impact if done naively. In this work, we investigate the case of updates consisting of both additions and removals of pieces of knowledge in the Defeasible Logic Programming (DeLP) framework, first analyzing the complexity of the problem and then identifying conditions under which we can avoid unnecessary computations—central to this is the development of structures (e.g. graphs) to keep track of which results can potentially be affected by a given update. We introduce a technique for the incremental computation of the warrant statuses of conclusions in DeLP knowledge bases that evolve due to the application of (sets of) updates. We present the results of a thorough experimental evaluation showing that our incremental approach yields significantly faster running times in practice, as well as overall fewer recomputations, even in the case of sets of updates performed simultaneously.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier Science
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.subject
DEFEASIBLE LOGIC PROGRAMMING
dc.subject
DYNAMIC DELP ARGUMENTATION
dc.subject
STRUCTURED ARGUMENTATION
dc.subject.classification
Ciencias de la Computación
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Incremental computation for structured argumentation over dynamic DeLP knowledge bases
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2021-07-27T14:58:26Z
dc.journal.volume
300
dc.journal.pagination
1-30; 103553
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Alfano, Gianvincenzo. Università della Calabria; Italia
dc.description.fil
Fil: Greco, Sergio. Università della Calabria; Italia
dc.description.fil
Fil: Parisi, Francesco. Università della Calabria; Italia
dc.description.fil
Fil: Simari, Gerardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina
dc.description.fil
Fil: Simari, Guillermo Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina
dc.journal.title
Artificial Intelligence
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0004370221001041
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.artint.2021.103553
Archivos asociados