Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

A cross-linguistic analysis of the temporal dynamics of turn-taking cues using machine learning as a descriptive tool

Brusco, PabloIcon ; Vidal, Jazmín; Beňuš, Štefan; Gravano, AgustinIcon
Fecha de publicación: 12/2020
Editorial: Elsevier Science
Revista: Speech Communication
ISSN: 0167-6393
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Computación

Resumen

In dialogue, speakers produce and perceive acoustic/prosodic turn-taking cues, which are fundamental for negotiating turn exchanges with their interlocutors. However, little of the temporal dynamics and cross-linguistic validity of these cues is known. In this work, we explore a set of acoustic/prosodic cues preceding three turn-transition types (hold, switch and backchannel) in three different languages (Slovak, American English and Argentine Spanish). For this, we use and refine a set of machine learning techniques that enable a finer-grained temporal analysis of such cues, as well as a comparison of their relative explanatory power. Our results suggest that the three languages, despite belonging to distinct linguistic families, share the general usage of a handful of acoustic/prosodic features to signal turn transitions. We conclude that exploiting features such as speech rate, final-word lengthening, the pitch track over the final 200 ms, the intensity track over the final 1000 ms, and noise-to-harmonics ratio (a voice-quality feature) might prove useful for further improving the accuracy of the turn-taking modules found in modern spoken dialogue systems.
Palabras clave: DIALOGUE , ENGLISH , MACHINE LEARNING , PROSODY , SLOVAK , SPANISH
Ver el registro completo
 
Archivos asociados
Tamaño: 7.027Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/141377
URL: https://www.sciencedirect.com/science/article/pii/S0167639320302727
DOI: https://doi.org/10.1016/j.specom.2020.09.004
Colecciones
Articulos(ICC)
Articulos de INSTITUTO DE INVESTIGACION EN CIENCIAS DE LA COMPUTACION
Citación
Brusco, Pablo; Vidal, Jazmín; Beňuš, Štefan; Gravano, Agustin; A cross-linguistic analysis of the temporal dynamics of turn-taking cues using machine learning as a descriptive tool; Elsevier Science; Speech Communication; 125; 12-2020; 24-40
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES