Mostrar el registro sencillo del ítem
dc.contributor.author
Tano, Pablo

dc.contributor.author
Romano, Sergio Gaston

dc.contributor.author
Sigman, Mariano

dc.contributor.author
Salles, Alejo

dc.contributor.author
Figueira, Santiago

dc.date.available
2021-09-23T16:05:16Z
dc.date.issued
2020-04
dc.identifier.citation
Tano, Pablo; Romano, Sergio Gaston; Sigman, Mariano; Salles, Alejo; Figueira, Santiago; Towards a more flexible language of thought: Bayesian grammar updates after each concept exposure; American Physical Society; Physical Review E: Statistical, Nonlinear and Soft Matter Physics; 101; 4; 4-2020; 0421281-0421288
dc.identifier.issn
2470-0053
dc.identifier.uri
http://hdl.handle.net/11336/141372
dc.description.abstract
Recent approaches to human concept learning have successfully combined the power of symbolic, infinitely productive rule systems and statistical learning to explain our ability to learn new concepts from just a few examples. The aim of most of these studies is to reveal the underlying language structuring these representations and providing a general substrate for thought. However, describing a model of thought that is fixed once trained is against the extensive literature that shows how experience shapes concept learning. Here, we ask about the plasticity of these symbolic descriptive languages. We perform a concept learning experiment that demonstrates that humans can change very rapidly the repertoire of symbols they use to identify concepts, by compiling expressions that are frequently used into new symbols of the language. The pattern of concept learning times is accurately described by a Bayesian agent that rationally updates the probability of compiling a new expression according to how useful it has been to compress concepts so far. By portraying the language of thought as a flexible system of rules, we also highlight the difficulties to pin it down empirically.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
American Physical Society

dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Bayesian methods
dc.subject
Language of thought
dc.subject
Neuroscience
dc.subject
Learning
dc.subject.classification
Ciencias de la Computación

dc.subject.classification
Ciencias de la Computación e Información

dc.subject.classification
CIENCIAS NATURALES Y EXACTAS

dc.title
Towards a more flexible language of thought: Bayesian grammar updates after each concept exposure
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2021-09-07T18:29:49Z
dc.journal.volume
101
dc.journal.number
4
dc.journal.pagination
0421281-0421288
dc.journal.pais
Estados Unidos

dc.description.fil
Fil: Tano, Pablo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina
dc.description.fil
Fil: Romano, Sergio Gaston. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina
dc.description.fil
Fil: Sigman, Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Torcuato Di Tella; Argentina. Universidad Nebrija; España
dc.description.fil
Fil: Salles, Alejo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Calculo. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Calculo; Argentina
dc.description.fil
Fil: Figueira, Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina
dc.journal.title
Physical Review E: Statistical, Nonlinear and Soft Matter Physics

dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pre/abstract/10.1103/PhysRevE.101.042128
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1103/PhysRevE.101.042128
Archivos asociados