Artículo
An Analysis of Distributed Programming Models and Frameworks for Large-scale Graph Processing
Corbellini, Alejandro
; Godoy, Daniela Lis
; Mateos Diaz, Cristian Maximiliano
; Schiaffino, Silvia Noemi
; Zunino Suarez, Alejandro Octavio
Fecha de publicación:
30/04/2020
Editorial:
Taylor & Francis
Revista:
Iete Journal Of Research
ISSN:
0377-2063
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In recent years, processing and analysing large graphs has become a major need in many research areas. Distributed graph processing programming models and frameworks arised as a natural solution to process linked data of large volumes, such as data originating from social media. These solutions are distributed by design and help developers to perform operations on the graph, sometimes reaching almost real-time performance even on huge graphs. Some of the available graph processing frameworks exploit generic data processing models, like MapReduce, while others were specifically built for graph processing, introducing techniques such as vertex or edge partitioning and graph-oriented programming models. In this work, we analyse the properties of recent and widely popular frameworks–from the perspective of the adopted programming model–designed to process large-scale graphs with the goal of assisting software developers/designers in choosing the most adequate tool.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(ISISTAN)
Articulos de INSTITUTO SUPERIOR DE INGENIERIA DEL SOFTWARE
Articulos de INSTITUTO SUPERIOR DE INGENIERIA DEL SOFTWARE
Citación
Corbellini, Alejandro; Godoy, Daniela Lis; Mateos Diaz, Cristian Maximiliano; Schiaffino, Silvia Noemi; Zunino Suarez, Alejandro Octavio; An Analysis of Distributed Programming Models and Frameworks for Large-scale Graph Processing; Taylor & Francis; Iete Journal Of Research; 30-4-2020; 1-10
Compartir
Altmétricas