Mostrar el registro sencillo del ítem

dc.contributor.author
Santos Flórez, Pedro Antonio  
dc.contributor.author
Ruestes, Carlos Javier  
dc.contributor.author
De Koning, Maurice  
dc.date.available
2021-09-21T13:10:58Z  
dc.date.issued
2020-04  
dc.identifier.citation
Santos Flórez, Pedro Antonio; Ruestes, Carlos Javier; De Koning, Maurice; Atomistic Simulation of Nanoindentation of Ice Ih; American Chemical Society; Journal of Physical Chemistry C; 124; 17; 4-2020; 9329-9336  
dc.identifier.issn
1932-7447  
dc.identifier.uri
http://hdl.handle.net/11336/140981  
dc.description.abstract
Using molecular dynamics simulations, we study the nanoindentation response of the ice Ih basal surface using two popular water models, namely, the all-atom TIP4P/Ice potential and the coarse-grained mW model. In particular, we consider two markedly different temperatures at which a quasi-liquid layer (QLL) is or is not present. We discuss loading curves, hardness estimates, deformation mechanisms, and residual imprints, considering the effect of the QLL, indenter size, and penetration rate. At very low temperatures, in the absence of a QLL, both potentials produce similar loading curves and deformation mechanisms. Close to the melting temperature, however, important differences were found, including deviations in the QLL thickness and fraction as well as the presence of a competition between pressure-induced melting and recrystallization events. Nevertheless, both potentials exhibit similar deformation mechanisms and steady-state hardness estimates that are consistent with experimental data. In addition to contributing to the discussion regarding the interpretation of experimental AFM loading curves, the present results provide valuable information concerning the simulation of contact problems involving ice and the behavior of these two popular water models under such circumstances.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Chemical Society  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
hardness  
dc.subject
ice  
dc.subject
quasi-liquid layer  
dc.subject
deformation  
dc.subject.classification
Físico-Química, Ciencia de los Polímeros, Electroquímica  
dc.subject.classification
Ciencias Químicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Atomistic Simulation of Nanoindentation of Ice Ih  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2021-08-25T19:29:17Z  
dc.journal.volume
124  
dc.journal.number
17  
dc.journal.pagination
9329-9336  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Washington  
dc.description.fil
Fil: Santos Flórez, Pedro Antonio. Universidade Estadual de Campinas; Brasil  
dc.description.fil
Fil: Ruestes, Carlos Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Interdisciplinario de Ciencias Básicas. - Universidad Nacional de Cuyo. Instituto Interdisciplinario de Ciencias Básicas; Argentina  
dc.description.fil
Fil: De Koning, Maurice. Universidade Estadual de Campinas; Brasil  
dc.journal.title
Journal of Physical Chemistry C  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/abs/10.1021/acs.jpcc.0c00255  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1021/acs.jpcc.0c00255