Mostrar el registro sencillo del ítem

dc.contributor.author
Castromán, Gabriel Alejandro  
dc.contributor.author
Barbosa, Nicolás D.  
dc.contributor.author
Rubino, Jorge German  
dc.contributor.author
Zyserman, Fabio Ivan  
dc.contributor.author
Holliger, Klaus  
dc.date.available
2021-09-20T13:45:21Z  
dc.date.issued
2020-07  
dc.identifier.citation
Castromán, Gabriel Alejandro; Barbosa, Nicolás D.; Rubino, Jorge German; Zyserman, Fabio Ivan; Holliger, Klaus; Fluid pressure diffusion effects on the excess compliance matrix of porous rocks containing aligned fractures; Wiley Blackwell Publishing, Inc; Geophysical Journal International; 222; 1; 7-2020; 715-733  
dc.identifier.issn
0956-540X  
dc.identifier.uri
http://hdl.handle.net/11336/140844  
dc.description.abstract
The presence of sets of open fractures is common in most reservoirs, and they exert important controls on the reservoir permeability as fractures act as preferential pathways for fluid flow. Therefore, the correct characterization of fracture sets in fluid-saturated rocks is of great practical importance. In this context, the inversion of fracture characteristics from seismic data is promising since their signatures are sensitive to a wide range of pertinent fracture parameters, such as density, orientation and fluid infill. The most commonly used inversion schemes are based on the classical linear slip theory (LST), in which the effects of the fractures are represented by a real-valued diagonal excess compliance matrix. To account for the effects of wave-induced fluid pressure diffusion (FPD) between fractures and their embedding background, several authors have shown that this matrix should be complex-valued and frequency-dependent. However, these approaches neglect the effects of FPD on the coupling between orthogonal deformations of the rock. With this motivation, we considered a fracture model based on a sequence of alternating poroelastic layers of finite thickness representing the background and the fractures, and derived analytical expressions for the corresponding excess compliance matrix. We evaluated this matrix for a wide range of background parameters to quantify the magnitude of its coefficients not accounted for by the classical LST and to determine how they are affected by FPD. We estimated the relative errors in the computation of anisotropic seismic velocity and attenuation associated with the LST approach. Our analysis showed that, in some cases, considering the simplified excess compliance matrix may lead to an incorrect representation of the anisotropic response of the probed fractured rock.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Wiley Blackwell Publishing, Inc  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
ACOUSTIC PROPERTIES  
dc.subject
FRACTURE AND FLOW  
dc.subject
NUMERICAL APPROXIMATIONS AND ANALYSIS  
dc.subject
WAVE PROPAGATION  
dc.subject.classification
Geoquímica y Geofísica  
dc.subject.classification
Ciencias de la Tierra y relacionadas con el Medio Ambiente  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Fluid pressure diffusion effects on the excess compliance matrix of porous rocks containing aligned fractures  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2021-09-06T17:12:32Z  
dc.identifier.eissn
1365-246X  
dc.journal.volume
222  
dc.journal.number
1  
dc.journal.pagination
715-733  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Londres  
dc.description.fil
Fil: Castromán, Gabriel Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina  
dc.description.fil
Fil: Barbosa, Nicolás D.. Universidad de Ginebra; Suiza  
dc.description.fil
Fil: Rubino, Jorge German. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina  
dc.description.fil
Fil: Zyserman, Fabio Ivan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina  
dc.description.fil
Fil: Holliger, Klaus. Universite de Lausanne; Suiza. Zhejiang University; China  
dc.journal.title
Geophysical Journal International  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/gji/article-abstract/222/1/715/5825648  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1093/gji/ggaa197