Mostrar el registro sencillo del ítem

dc.contributor.author
Benvenuto, Omar Gustavo  
dc.contributor.author
de Vito, María Alejandra  
dc.contributor.author
Horvath, J. E.  
dc.date.available
2017-03-20T14:01:28Z  
dc.date.issued
2015-01  
dc.identifier.citation
Benvenuto, Omar Gustavo; de Vito, María Alejandra; Horvath, J. E.; The Quasi-Roche Lobe overflow state in the evolution of close binary systems containing a radio pulsar; Iop Publishing; Astrophysical Journal; 798; 44; 1-2015; 1-8  
dc.identifier.issn
0004-637X  
dc.identifier.uri
http://hdl.handle.net/11336/14075  
dc.description.abstract
We study the evolution of close binary systems formed by a normal (solar composition), intermediate-mass-donor star together with a neutron star. We consider models including irradiation feedback and evaporation. These nonstandard ingredients deeply modify the mass-transfer stages of these binaries. While models that neglect irradiation feedback undergo continuous, long-standing mass-transfer episodes, models including these effects suffer a number of cycles of mass transfer and detachment. During mass transfer, the systems should reveal themselves as low-mass X-ray binaries (LMXBs), whereas when they are detached they behave as binary radio pulsars. We show that at these stages irradiated models are in a Roche lobe overflow (RLOF) state or in a quasi-RLOF state. Quasi-RLOF stars have radii slightly smaller than their Roche lobes. Remarkably, these conditions are attained for an orbital period as well as donor mass values in the range corresponding to a family of binary radio pulsars known as "redbacks." Thus, redback companions should be quasi-RLOF stars. We show that the characteristics of the redback system PSR J1723-2837 are accounted for by these models. In each mass-transfer cycle these systems should switch from LMXB to binary radio pulsar states with a timescale of approximately one million years. However, there is recent and fast growing evidence of systems switching on far shorter, human timescales. This should be related to instabilities in the accretion disk surrounding the neutron star and/or radio ejection, still to be included in the model having the quasi-RLOF state as a general condition.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Iop Publishing  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Close Binaries  
dc.subject
Evolution of Stars  
dc.subject
Pulsars  
dc.subject
Psr J1723-2837 (Pulsar)  
dc.subject.classification
Astronomía  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
The Quasi-Roche Lobe overflow state in the evolution of close binary systems containing a radio pulsar  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2017-03-06T18:08:16Z  
dc.journal.volume
798  
dc.journal.number
44  
dc.journal.pagination
1-8  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Londres  
dc.description.fil
Fil: Benvenuto, Omar Gustavo. Universidad Nacional de la Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico La Plata. Instituto de Astrofísica de La Plata; Argentina  
dc.description.fil
Fil: de Vito, María Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto de Astrofísica de la Plata; Argentina. Universidad Nacional de la Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina  
dc.description.fil
Fil: Horvath, J. E.. Universidade Do Sao Paulo. Instituto Astronomia, Geofisica E Ciencias Atmosfericas; Brasil  
dc.journal.title
Astrophysical Journal  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/0004-637X/798/1/44/  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1088/0004-637X/798/1/44