Artículo
Extraction of the minority carrier transport properties of solar cells using the Hovel model and genetic algorithms
Cappelletti, Marcelo Ángel
; Cedola, Ariel Pablo; Olivera, Lucas Maximiliano; Casas, Guillermo; Osio, Jorge Rafael; Peltzer y Blanca, Eitel Leopoldo
Fecha de publicación:
02/2020
Editorial:
IOP Publishing
Revista:
Measurement Science & Technology (print)
ISSN:
0957-0233
e-ISSN:
1361-6501
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In this paper, a quick and accurate method for extraction of the minority carrier transport properties of p-n or n-p junction solar cells, such as diffusion lengths and surface recombination velocities, is presented. The knowledge of these parameters is essential to investigating factors that limit the performance of photovoltaic devices. The proposed method, based on genetic algorithms and the analytical Hovel model, is used to fit the external quantum efficiency (EQE) curves of solar cells with different emitter thicknesses. As a demonstrative example of application of the procedure carried out in this work, theoretical and experimental EQE curves of n-p GaAs solar cells under the standard AM1.5G spectrum have been used in order to extract the desired parameters. Errors less than 2.4% have been obtained, which shows the capability of the developed tool. An analysis of the total number of iterations is presented. The results obtained can be used to improve the design, optimization, and manufacturing process of high-efficiency photovoltaic devices.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(LEICI)
Articulos de INSTITUTO DE INVESTIGACIONES EN ELECTRONICA, CONTROL Y PROCESAMIENTO DE SEÑALES
Articulos de INSTITUTO DE INVESTIGACIONES EN ELECTRONICA, CONTROL Y PROCESAMIENTO DE SEÑALES
Citación
Cappelletti, Marcelo Ángel; Cedola, Ariel Pablo; Olivera, Lucas Maximiliano; Casas, Guillermo; Osio, Jorge Rafael; et al.; Extraction of the minority carrier transport properties of solar cells using the Hovel model and genetic algorithms; IOP Publishing; Measurement Science & Technology (print); 31; 2; 2-2020; 1-10
Compartir
Altmétricas