Mostrar el registro sencillo del ítem
dc.contributor.author
Burdisso, Sergio Gastón

dc.contributor.author
Errecalde, Marcelo Luis

dc.contributor.author
Montes y Gómez, Manuel

dc.date.available
2021-09-17T10:19:46Z
dc.date.issued
2019-11-01
dc.identifier.citation
Burdisso, Sergio Gastón; Errecalde, Marcelo Luis; Montes y Gómez, Manuel; A text classification framework for simple and effective early depression detection over social media streams; Pergamon-Elsevier Science Ltd; Expert Systems with Applications; 133; 1-11-2019; 182-197
dc.identifier.issn
0957-4174
dc.identifier.uri
http://hdl.handle.net/11336/140606
dc.description.abstract
With the rise of the Internet, there is a growing need to build intelligent systems that are capable of efficiently dealing with early risk detection (ERD) problems on social media, such as early depression detection, early rumor detection or identification of sexual predators. These systems, nowadays mostly based on machine learning techniques, must be able to deal with data streams since users provide their data over time. In addition, these systems must be able to decide when the processed data is sufficient to actually classify users. Moreover, since ERD tasks involve risky decisions by which people's lives could be affected, such systems must also be able to justify their decisions. However, most standard and state-of-the-art supervised machine learning models (such as SVM, MNB, Neural Networks, etc.) are not well suited to deal with this scenario. This is due to the fact that they either act as black boxes or do not support incremental classification/learning. In this paper we introduce SS3, a novel supervised learning model for text classification that naturally supports these aspects. SS3 was designed to be used as a general framework to deal with ERD problems. We evaluated our model on the CLEF's eRisk2017 pilot task on early depression detection. Most of the 30 contributions submitted to this competition used state-of-the-art methods. Experimental results show that our classifier was able to outperform these models and standard classifiers, despite being less computationally expensive and having the ability to explain its rationale.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Pergamon-Elsevier Science Ltd

dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.subject
EARLY DEPRESSION DETECTION
dc.subject
EARLY TEXT CLASSIFICATION
dc.subject
EXPLAINABILITY
dc.subject
INCREMENTAL CLASSIFICATION
dc.subject
INTERPRETABILITY
dc.subject
SS3
dc.subject.classification
Ciencias de la Computación

dc.subject.classification
Ciencias de la Computación e Información

dc.subject.classification
CIENCIAS NATURALES Y EXACTAS

dc.title
A text classification framework for simple and effective early depression detection over social media streams
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2020-08-05T16:42:54Z
dc.identifier.eissn
1873-6793
dc.journal.volume
133
dc.journal.pagination
182-197
dc.journal.pais
Estados Unidos

dc.journal.ciudad
Massachusetts
dc.description.fil
Fil: Burdisso, Sergio Gastón. Universidad Nacional de San Luis; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis; Argentina
dc.description.fil
Fil: Errecalde, Marcelo Luis. Universidad Nacional de San Luis; Argentina
dc.description.fil
Fil: Montes y Gómez, Manuel. Instituto Nacional de Astrofísica, Óptica y Electrónica; México
dc.journal.title
Expert Systems with Applications

dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0957417419303525
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.eswa.2019.05.023
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1905.08772
Archivos asociados