Mostrar el registro sencillo del ítem

dc.contributor.author
Valencia, Felipe J.  
dc.contributor.author
Pinto, Benjamín  
dc.contributor.author
Kiwi, Miguel  
dc.contributor.author
Ruestes, Carlos Javier  
dc.contributor.author
Bringa, Eduardo Marcial  
dc.contributor.author
Rogan, José  
dc.date.available
2021-09-16T01:24:43Z  
dc.date.issued
2020-06  
dc.identifier.citation
Valencia, Felipe J.; Pinto, Benjamín; Kiwi, Miguel; Ruestes, Carlos Javier; Bringa, Eduardo Marcial; et al.; Nanoindentation of polycrystalline Pd hollow nanoparticles: Grain size role; Elsevier Science; Computational Materials Science; 179; 109642; 6-2020; 1-7  
dc.identifier.issn
0927-0256  
dc.identifier.uri
http://hdl.handle.net/11336/140458  
dc.description.abstract
Polycrystalline hollow nanoparticles present a unique combination of strength and flexibility. However, the exact role displayed by their grain structure in mechanical properties has not been yet fully understood. Here, by means of molecular dynamics simulations, the role of grain boundary structure during the nanoindentation of metallic hollow nanoparticles with a polycrystalline shell was investigated. Our simulations were performed for a range of grain sizes and shell thicknesses, including the large strain regime. Our results show that hNP mechanical properties can be controlled by tuning the grain size of the polycrystalline shell, following an inverse Hall-Petch type dependence with the grain size. Deformation involves dislocation activity, twin hardening, grain boundary sliding, coalescence, and rotation. For single crystal shells at large strain there is hardenning following the closure of the internal cavity. For nanocrystalline shells at large strains a constant flow stress regime is observed even for deformations as high as 80%, thanks to grain boundary activity. Surprisingly, some particular grain size not only leads to an improvement in strength, but also a flow stress higher than the observed in their single-crystalline counterparts. Our work, suggest that grain boundary structure can be employed to improve and tailor desired mechanical properties in hollow nanostructures.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
HOLLOW NANOPARTICLES  
dc.subject
NANOINDENTATION  
dc.subject
PLASTICITY  
dc.subject
POLYCRYSTALLINE MATERIALS  
dc.subject.classification
Ingeniería de los Materiales  
dc.subject.classification
Ingeniería de los Materiales  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Nanoindentation of polycrystalline Pd hollow nanoparticles: Grain size role  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2021-08-25T19:23:58Z  
dc.journal.volume
179  
dc.journal.number
109642  
dc.journal.pagination
1-7  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Valencia, Felipe J.. Centro Para El Desarrollo de la Nanociencia y Nanotecnología; Chile. Universidad Mayor; Chile  
dc.description.fil
Fil: Pinto, Benjamín. Universidad Mayor; Chile  
dc.description.fil
Fil: Kiwi, Miguel. Universidad de Chile; Chile. Centro Para El Desarrollo de la Nanociencia y Nanotecnología; Chile  
dc.description.fil
Fil: Ruestes, Carlos Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Interdisciplinario de Ciencias Básicas. - Universidad Nacional de Cuyo. Instituto Interdisciplinario de Ciencias Básicas; Argentina  
dc.description.fil
Fil: Bringa, Eduardo Marcial. Universidad de Mendoza; Argentina. Universidad Mayor; Chile  
dc.description.fil
Fil: Rogan, José. Centro Para El Desarrollo de la Nanociencia y Nanotecnología; Chile. Universidad de Chile; Chile  
dc.journal.title
Computational Materials Science  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.commatsci.2020.109642  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0927025620301336