Mostrar el registro sencillo del ítem
dc.contributor.author
Cosimo, Alejandro
dc.contributor.author
Cavalieri, Federico José
dc.contributor.author
Cardona, Alberto
dc.contributor.author
Brüls, Olivier
dc.date.available
2021-09-15T16:37:25Z
dc.date.issued
2020-12
dc.identifier.citation
Cosimo, Alejandro; Cavalieri, Federico José; Cardona, Alberto; Brüls, Olivier; On the adaptation of local impact laws for multiple impact problems; Springer; Nonlinear Dynamics; 102; 4; 12-2020; 1997-2016
dc.identifier.issn
0924-090X
dc.identifier.uri
http://hdl.handle.net/11336/140402
dc.description.abstract
The classical local impact laws of Newton and Poisson are able to capture the behaviour observed in single-impact collisions in many situations. However, in the case of collisions with multiple impacts, the simultaneous enforcement of local impact laws does not reproduce essential features of the physical process, such as propagation effects. The aim of this work is to broaden the applicability of the classical Newton impact law to problems involving multiple impacts by assuming instantaneous local impact times and a rigid behaviour of the bodies in contact. The proposed method is implemented as an extension of the nonsmooth generalized-α method. In order to model events involving multiple impacts, a sequence of impact problems is defined on a vanishing time interval and the active set of each velocity-level sub-problem is redefined in such a way that closed contacts with zero pre-impact velocity are considered inactive. This simple redefinition allows us to deal successfully with many situations involving multiple impacts, by generating a sequence of impact problems which is amenable to be modelled by the simultaneous enforcement of classical impact laws. Additionally, the methodology fits well under the algorithmic structure of the nonsmooth generalized-α scheme or any scheme dealing with linear complementary problems at velocity level. Several examples are analyzed in order to assess the performance of the method and to discuss its main features.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Springer
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
BILLIARD BREAK
dc.subject
MULTIPLE IMPACTS
dc.subject
NEWTON’S CRADLE
dc.subject
NONSMOOTH CONTACT DYNAMICS
dc.subject
NONSMOOTH GENERALIZED-Α
dc.subject.classification
Ingeniería Mecánica
dc.subject.classification
Ingeniería Mecánica
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
On the adaptation of local impact laws for multiple impact problems
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2021-08-25T19:40:22Z
dc.journal.volume
102
dc.journal.number
4
dc.journal.pagination
1997-2016
dc.journal.pais
Alemania
dc.journal.ciudad
Berlín
dc.description.fil
Fil: Cosimo, Alejandro. Université de Liège; Bélgica. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Cavalieri, Federico José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina
dc.description.fil
Fil: Cardona, Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina
dc.description.fil
Fil: Brüls, Olivier. Université de Liège; Bélgica
dc.journal.title
Nonlinear Dynamics
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1007/s11071-020-05869-z
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs11071-020-05869-z
Archivos asociados