Artículo
Omp25-dependent engagement of SLAMF1 by Brucella abortus in dendritic cells limits acute inflammation and favours bacterial persistence in vivo
Degos, Clara; Hysenaj, Lisiena; Gonzalez Espinoza, Gabriela; Arce Gorvel, Vilma; Gagnaire, Aurélie; Papadopoulos, Alexia; Pasquevich, Karina Alejandra
; Méresse, Stéphane; Cassataro, Juliana
; Mémet, Sylvie; Gorvel, Jean Pierre
Fecha de publicación:
01/2020
Editorial:
Wiley Blackwell Publishing, Inc
Revista:
Cellular Microbiology (print)
ISSN:
1462-5814
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
The strategies by which intracellular pathogenic bacteria manipulate innate immunity to establish chronicity are poorly understood. Here, we show that Brucella abortus outer membrane protein Omp25 specifically binds the immune cell receptor SLAMF1 in vitro. The Omp25-dependent engagement of SLAMF1 by B. abortus limits NF-κB translocation in dendritic cells (DCs) with no impact on Brucella intracellular trafficking and replication. This in turn decreases pro-inflammatory cytokine secretion and impairs DC activation. The Omp25-SLAMF1 axis also dampens the immune response without affecting bacterial replication in vivo during the acute phase of Brucella infection in a mouse model. In contrast, at the chronic stage of infection, the Omp25/SLAMF1 engagement is essential for Brucella persistence. Interaction of a specific bacterial protein with an immune cell receptor expressed on the DC surface at the acute stage of infection is thus a powerful mechanism to support microbe settling in its replicative niche and progression to chronicity.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos (IIBIO)
Articulos de INSTITUTO DE INVESTIGACIONES BIOTECNOLOGICAS
Articulos de INSTITUTO DE INVESTIGACIONES BIOTECNOLOGICAS
Citación
Degos, Clara; Hysenaj, Lisiena; Gonzalez Espinoza, Gabriela; Arce Gorvel, Vilma; Gagnaire, Aurélie; et al.; Omp25-dependent engagement of SLAMF1 by Brucella abortus in dendritic cells limits acute inflammation and favours bacterial persistence in vivo; Wiley Blackwell Publishing, Inc; Cellular Microbiology (print); 22; 4; 1-2020; 1-48
Compartir
Altmétricas