Mostrar el registro sencillo del ítem

dc.contributor.author
Rossit, Daniel Alejandro  
dc.contributor.author
Pais, Cristóbal  
dc.contributor.author
Weintraub, Andrés  
dc.contributor.author
Broz, Diego Ricardo  
dc.contributor.author
Frutos, Mariano  
dc.contributor.author
Tohmé, Fernando Abel  
dc.date.available
2021-09-14T12:38:37Z  
dc.date.issued
2021-10-15  
dc.identifier.citation
Rossit, Daniel Alejandro; Pais, Cristóbal; Weintraub, Andrés; Broz, Diego Ricardo; Frutos, Mariano; et al.; Stochastic forestry harvest planning under soil compaction conditions; Academic Press Ltd - Elsevier Science Ltd; Journal of Environmental Management; 296; 15-10-2021; 1-42  
dc.identifier.issn
0301-4797  
dc.identifier.uri
http://hdl.handle.net/11336/140296  
dc.description.abstract
We present a study of annual forestry harvesting planning considering the risk of compaction generated by the transit of heavy forestry machinery. Soil compaction is a problem that occurs when the soil loses its natural resistance to resist the movement of machinery, causing the soil to be compacted in excess. This compaction generates unwanted effects on both the ecosystem and its economic sustainability. Therefore, when the risk of compaction is considerable, harvest operations must be stopped, complicating the annual plan and incurring in excessive costs to alleviate the situation. To incorporate the risk of compaction into the planning process, it is necessary to incorporate the analysis of the soil´s hydrological balance, which combines the effect of rainfall and potential evapotranspiration. This requires analyzing the uncertainty of rainfall regimes, for which we propose a stochastic model under different scenarios. This stochastic model yields better results than the current deterministic methods used by lumber companies. Initially, the model is solved analyzing monthly scenarios. Then, we change to a biweekly model that provides a better representation of the dynamics of the system. While this improves the performance of the model, this new formulation increases the number of scenarios of the stochastic model. To address this complexity, we apply the Progressive Hedging method, which decomposes the problem in scenarios, yielding high-quality solutions in reasonable time.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Academic Press Ltd - Elsevier Science Ltd  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
FOREST HARVEST PLANNING  
dc.subject
PROGRESSIVE HEDGING  
dc.subject
RAINFALL REGIME  
dc.subject
SOIL COMPACTION  
dc.subject
STOCHASTIC MODELLING  
dc.subject
SUSTAINABLE MANAGEMENT  
dc.subject.classification
Otras Ingeniería del Medio Ambiente  
dc.subject.classification
Ingeniería del Medio Ambiente  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Stochastic forestry harvest planning under soil compaction conditions  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2021-09-09T16:44:37Z  
dc.identifier.eissn
1095-8630  
dc.journal.volume
296  
dc.journal.pagination
1-42  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Rossit, Daniel Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina  
dc.description.fil
Fil: Pais, Cristóbal. University of California at Berkeley; Estados Unidos  
dc.description.fil
Fil: Weintraub, Andrés. Universidad de Chile; Chile  
dc.description.fil
Fil: Broz, Diego Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Misiones; Argentina  
dc.description.fil
Fil: Frutos, Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Económicas y Sociales del Sur. Universidad Nacional del Sur. Departamento de Economía. Instituto de Investigaciones Económicas y Sociales del Sur; Argentina  
dc.description.fil
Fil: Tohmé, Fernando Abel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina  
dc.journal.title
Journal of Environmental Management  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0301479721012196  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.jenvman.2021.113157