Mostrar el registro sencillo del ítem

dc.contributor.author
Mininni, Camilo Juan  
dc.contributor.author
Zanutto, Bonifacio Silvano  
dc.date.available
2021-09-11T02:39:56Z  
dc.date.issued
2021-12  
dc.identifier.citation
Mininni, Camilo Juan; Zanutto, Bonifacio Silvano; Probing the structure–function relationship with neural networks constructed by solving a system of linear equations; Nature Research; Scientific Reports; 11; 1; 12-2021; 1-18  
dc.identifier.issn
2045-2322  
dc.identifier.uri
http://hdl.handle.net/11336/140169  
dc.description.abstract
Neural network models are an invaluable tool to understand brain function since they allow us to connect the cellular and circuit levels with behaviour. Neural networks usually comprise a huge number of parameters, which must be chosen carefully such that networks reproduce anatomical, behavioural, and neurophysiological data. These parameters are usually fitted with off-the-shelf optimization algorithms that iteratively change network parameters and simulate the network to evaluate its performance and improve fitting. Here we propose to invert the fitting process by proceeding from the network dynamics towards network parameters. Firing state transitions are chosen according to the transition graph associated with the solution of a task. Then, a system of linear equations is constructed from the network firing states and membrane potentials, in a way that guarantees the consistency of the system. This allows us to uncouple the dynamical features of the model, like its neurons firing rate and correlation, from the structural features, and the task-solving algorithm implemented by the network. We employed our method to probe the structure–function relationship in a sequence memory task. The networks obtained showed connectivity and firing statistics that recapitulated experimental observations. We argue that the proposed method is a complementary and needed alternative to the way neural networks are constructed to model brain function.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Nature Research  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
NEURAL NETWORK  
dc.subject
CIRCUIT LEVELS circuit levels  
dc.subject
BEHAVIOUR  
dc.subject
NEURONS  
dc.subject.classification
Otras Ingeniería Médica  
dc.subject.classification
Ingeniería Médica  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.subject.classification
Neurociencias  
dc.subject.classification
Medicina Básica  
dc.subject.classification
CIENCIAS MÉDICAS Y DE LA SALUD  
dc.title
Probing the structure–function relationship with neural networks constructed by solving a system of linear equations  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2021-07-30T19:22:32Z  
dc.journal.volume
11  
dc.journal.number
1  
dc.journal.pagination
1-18  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Mininni, Camilo Juan. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Ingeniería Biomédica.; Argentina  
dc.description.fil
Fil: Zanutto, Bonifacio Silvano. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Ingeniería Biomédica.; Argentina  
dc.journal.title
Scientific Reports  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/s41598-021-82964-0  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1038/s41598-021-82964-0  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/pmid/https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7884791/