Mostrar el registro sencillo del ítem

dc.contributor.author
Goloboff, Pablo Augusto  
dc.contributor.author
Arias Becerra, Joan Salvador  
dc.date.available
2021-09-10T22:34:02Z  
dc.date.issued
2019-03-25  
dc.identifier.citation
Goloboff, Pablo Augusto; Arias Becerra, Joan Salvador; Likelihood approximations of implied weights parsimony can be selected over the Mk model by the Akaike information criterion; Wiley Blackwell Publishing, Inc; Cladistics; 35; 6; 25-3-2019; 695-716  
dc.identifier.issn
0748-3007  
dc.identifier.uri
http://hdl.handle.net/11336/140153  
dc.description.abstract
A likelihood method that approximates the behaviour of implied weighting is described. This approach provides a likelihood perspective on several aspects of implied weighting, such as guidance for the choice of concavity values, a justification to use different concavities for different numbers of taxa, and a natural basis for extended implied weighting. In this approach, the number of free parameters in the estimation depends on C, the number of characters (in contrast to the standard Mk model, which estimates 2T?3 parameters for T taxa). Depending on the characteristics of the dataset, the likelihood obtained with this approach may in some cases be similar or superior to that of the Mk model, but with fewer parameters being adjusted. Because of that tradeoff, testing against the Mk model by means of the Akaike information criterion on a set of 182 morphological datasets indicated many cases (36) in which the likelihood approximation to implied weighting is the best method, from an information-theoretic point of view. Given that it is expected to produce (almost) the same results as this maximum-likelihood approximation, implied weighting can therefore be seen as a valid alternative to the Mk model often used for morphological datasets, on the basis of a criterion for model fit widely advocated by likelihoodists.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Wiley Blackwell Publishing, Inc  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
no  
dc.subject
keywords  
dc.subject
available  
dc.subject.classification
Biología  
dc.subject.classification
Ciencias Biológicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Likelihood approximations of implied weights parsimony can be selected over the Mk model by the Akaike information criterion  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-12-16T16:11:27Z  
dc.journal.volume
35  
dc.journal.number
6  
dc.journal.pagination
695-716  
dc.journal.pais
Reino Unido  
dc.description.fil
Fil: Goloboff, Pablo Augusto. Fundación Miguel Lillo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Arias Becerra, Joan Salvador. Fundación Miguel Lillo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.journal.title
Cladistics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1111/cla.12380  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/10.1111/cla.12380