Mostrar el registro sencillo del ítem

dc.contributor.author
Galicer, Daniel Eric  
dc.contributor.author
Mansilla, Martin Ignacio  
dc.contributor.author
Muro, Luis Santiago Miguel  
dc.date.available
2021-09-10T22:32:57Z  
dc.date.issued
2020-12-11  
dc.identifier.citation
Galicer, Daniel Eric; Mansilla, Martin Ignacio; Muro, Luis Santiago Miguel; The sup‐norm vs. the norm of the coefficients: equivalence constants for homogeneous polynomials; Wiley VCH Verlag; Mathematische Nachrichten; 293; 2; 11-12-2020; 263-283  
dc.identifier.issn
0025-584X  
dc.identifier.uri
http://hdl.handle.net/11336/140150  
dc.description.abstract
Let Amp,r(n) be the best constant that fulfills the following inequality: for every m-homogeneous polynomial P(z)=∑|α|=maαzα in n complex variables, (∑|α|=m|aα|r)1/r≤Amp,r(n)supz∈Bℓnp∣∣P(z)∣∣. For every degree m, and a wide range of values of p,r∈[1,∞] (including any r in the case p∈[1,2], and any r and p for the 2-homogeneous case), we give the correct asymptotic behavior of these constants as n (the number of variables) tends to infinity. Remarkably, in many cases, extremal polynomials for these inequalities are not (as traditionally expected) found using classical random unimodular polynomials, and special combinatorial configurations of monomials are needed. Namely, we show that Steiner polynomials (i.e., m-homogeneous polynomials such that the multi-indices corresponding to the nonzero coefficients form partial Steiner systems), do the work for certain range of values of p,r. As a byproduct, we present some applications of these estimates to the interpolation of tensor products of Banach spaces, to the study of (mixed) unconditionality in spaces of polynomials and to the multivariable von Neumann's inequality.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Wiley VCH Verlag  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Hardy-Littlewood inequalities  
dc.subject
multivariable von Neumann?s inequality.  
dc.subject
unconditionality in spaces ofpolynomials  
dc.subject
unimodular polynomials  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
The sup‐norm vs. the norm of the coefficients: equivalence constants for homogeneous polynomials  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-08-05T16:40:09Z  
dc.journal.volume
293  
dc.journal.number
2  
dc.journal.pagination
263-283  
dc.journal.pais
Alemania  
dc.description.fil
Fil: Galicer, Daniel Eric. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina  
dc.description.fil
Fil: Mansilla, Martin Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina  
dc.description.fil
Fil: Muro, Luis Santiago Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina  
dc.journal.title
Mathematische Nachrichten  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/abs/10.1002/mana.201800404  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1002/mana.201800404  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1602.01735v3