Mostrar el registro sencillo del ítem

dc.contributor.author
Tsigkanos, Christos  
dc.contributor.author
Garriga, Martín  
dc.contributor.author
Baresi, Luciano  
dc.contributor.author
Ghezzi, Carlo  
dc.date.available
2021-09-10T19:37:47Z  
dc.date.issued
2020-05  
dc.identifier.citation
Tsigkanos, Christos; Garriga, Martín; Baresi, Luciano; Ghezzi, Carlo; Cloud Deployment Tradeoffs for the Analysis of Spatially Distributed Internet of Things Systems; Association for Computing Machinery; Acm Transactions On Internet Technology; 20; 2; 5-2020; 1-23  
dc.identifier.issn
1533-5399  
dc.identifier.uri
http://hdl.handle.net/11336/140144  
dc.description.abstract
Internet-enabled devices operating in the physical world are increasingly integrated in modern distributed systems. We focus on systems where the dynamics of spatial distribution is crucial; in such cases, devices may need to carry out complex computations (e.g., analyses) to check satisfaction of spatial requirements. The requirements are partly global - as the overall system should achieve certain goals - and partly individual, as each entity may have different goals. Assurance may be achieved by keeping a model of the system at runtime, monitoring events that lead to changes in the spatial environment, and performing requirements analysis. However, computationally intensive runtime spatial analysis cannot be supported by resource-constrained devices and may be offloaded to the cloud. In such a scenario, multiple challenges arise regarding resource allocation, cost, performance, among other dimensions. In particular, when the workload is unknown at the system's design time, it may be difficult to guarantee application-service-level agreements, e.g., on response times. To address and reason on these challenges, we first instantiate complex computations as microservices and integrate them to an IoT-cloud architecture. Then, we propose alternative cloud deployments for such an architecture - based on virtual machines, containers, and the recent Functions-as-a-Service paradigm. Finally, we assess the feasibility and tradeoffs of the different deployments in terms of scalability, performance, cost, resource utilization, and more. We adopt a workload scenario from a known dataset of taxis roaming in Beijing, and we derive other workloads to represent unexpected request peaks and troughs. The approach may be replicated in the design process of similar classes of spatially distributed IoT systems.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Association for Computing Machinery  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
CLOUD COMPUTING  
dc.subject
SOFTWARE SYSTEM MODELS  
dc.subject.classification
Ciencias de la Computación  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Cloud Deployment Tradeoffs for the Analysis of Spatially Distributed Internet of Things Systems  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2021-09-06T20:16:08Z  
dc.journal.volume
20  
dc.journal.number
2  
dc.journal.pagination
1-23  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Nueva York  
dc.description.fil
Fil: Tsigkanos, Christos. Vienna University of Technology; Austria  
dc.description.fil
Fil: Garriga, Martín. Universidad Nacional del Comahue; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina  
dc.description.fil
Fil: Baresi, Luciano. Politecnico di Milano; Italia  
dc.description.fil
Fil: Ghezzi, Carlo. Politecnico di Milano; Italia  
dc.journal.title
Acm Transactions On Internet Technology  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://dl.acm.org/doi/abs/10.1145/3381452  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1145/3381452