Mostrar el registro sencillo del ítem

dc.contributor.author
Bre, Facundo  
dc.contributor.author
Roman, Nadia Denise  
dc.contributor.author
Fachinotti, Victor Daniel  
dc.date.available
2021-09-10T19:04:02Z  
dc.date.issued
2020-01  
dc.identifier.citation
Bre, Facundo; Roman, Nadia Denise; Fachinotti, Victor Daniel; An efficient metamodel-based method to carry out multi-objective building performance optimizations; Elsevier Science SA; Energy and Buildings; 206; 1-2020; 1-15; 109576  
dc.identifier.issn
0378-7788  
dc.identifier.uri
http://hdl.handle.net/11336/140139  
dc.description.abstract
Nowadays, performing multi-objective optimizations of actual building designs is one of the most challenging problems of the building energy efficiency area. This paper aims to propose an efficient method to solve multi-objective optimization building performance problems using a novel metamodel-based approach. To this end, the multi-objective Non-dominated Sorting Genetic Algorithm-II (NSGA-II) is dynamically coupled with artificial neural network (ANN) metamodels, which were previously trained with results of building performance simulations conducted using the EnergyPlusTM software. This new approach proposes an optimal way to generate the samples used to train and validate the ANN-based metamodels minimizing the total of building energy simulations necessary to train them, and guarantees accurate optimization results. To validate the strengths of the proposed method, it is applied to optimize the energy efficiency and thermal comfort of an actual dwelling in order to get the best trade-off (Pareto front) of the building between heating and cooling performance. This case study involves 12 of the more influential discrete and categorical design variables like roof types, external and internal wall types, solar orientation, solar absorptance, size and type of windows, and the dimension of external window shadings of this house among others, making a complex building performance optimization problem with more than 108 possibilities to choose. Furthermore, the results obtained are systematically compared and validated with the “true” Pareto front achieved using a simulate-based scheme which directly couples EnergyPlus program and NSGA-II algorithm. Results indicated that the presented method is able to reduce up to 75% the number of building energy simulations needed to find the Pareto front of an actual multi-objective building performance optimization problem, keeping a good accuracy of the results.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science SA  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
BUILDING PERFORMANCE OPTIMIZATION  
dc.subject
ENERGY-EFFICIENT BUILDINGS  
dc.subject
METAMODELING  
dc.subject
MULTI-OBJECTIVE OPTIMIZATION  
dc.subject
SURROGATE MODEL  
dc.subject.classification
Ingeniería de la Construcción  
dc.subject.classification
Ingeniería Civil  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.subject.classification
Mecánica Aplicada  
dc.subject.classification
Ingeniería Mecánica  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.subject.classification
Ingeniería Arquitectónica  
dc.subject.classification
Ingeniería Civil  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
An efficient metamodel-based method to carry out multi-objective building performance optimizations  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2021-08-25T19:45:18Z  
dc.journal.volume
206  
dc.journal.pagination
1-15; 109576  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Bre, Facundo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina. Universidad Tecnológica Nacional. Facultad Regional Concepción del Uruguay; Argentina  
dc.description.fil
Fil: Roman, Nadia Denise. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina  
dc.description.fil
Fil: Fachinotti, Victor Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina. Universidad Tecnológica Nacional; Argentina  
dc.journal.title
Energy and Buildings  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0378778819323047  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.enbuild.2019.109576