Mostrar el registro sencillo del ítem

dc.contributor.author
Álvarez Hostos, Juan Carlos  
dc.contributor.author
Cruchaga, Marcela A.  
dc.contributor.author
Fachinotti, Victor Daniel  
dc.contributor.author
Zambrano Carrillo, Javier Alexander  
dc.contributor.author
Zamora Ramirez, Esteban Alonso  
dc.date.available
2021-09-08T23:23:06Z  
dc.date.issued
2020-12  
dc.identifier.citation
Álvarez Hostos, Juan Carlos; Cruchaga, Marcela A.; Fachinotti, Victor Daniel; Zambrano Carrillo, Javier Alexander; Zamora Ramirez, Esteban Alonso; A plausible extension of standard penalty, streamline upwind and immersed boundary techniques to the improved element-free Galerkin-based solution of incompressible Navier–Stokes equations; Elsevier Science SA; Computer Methods in Applied Mechanics and Engineering; 372; 113380; 12-2020; 1-27  
dc.identifier.issn
0045-7825  
dc.identifier.uri
http://hdl.handle.net/11336/139962  
dc.description.abstract
The present work has been conducted in order to propose the extension of standard penalty and stabilization techniques to the improved element-free Galerkin (IEFG) method, for the numerical solution of incompressible fluid flow problems. In principle, the numerical procedures to be implemented in this communication have been conceived for finite element method (FEM)-based solutions, and these include the reduced integration penalty method (RIPM), the streamline upwind Petrov–Galerkin (SUPG) scheme, and a penalty-based immersed boundary method (PBIBM) for the imposition of essential boundary conditions along internal fluid–solid interfaces. The linear momentum balance and mass conservation equations have been coupled via the RIPM, in order to obtain a global weak formulation where the IEFG model is entirely developed in terms of improved moving least squares (IMLS) approximations of the velocity field. A detailed explanation concerning the appropriate extension of both the RIPM and SUPG procedures to the context of IEFG formulations, has also been provided. The resulting formulation has been applied to the solution of two well-known benchmark problems: i) Lid-driven square cavity flow, and ii) Flow past a fixed cylinder. Regarding the flow past a fixed cylinder benchmark problem, the fluid–solid interaction has been imposed as an internal immersed boundary condition via the PBIBM. The feasibility and reliability of implementing the RIPM, SUPG and PBIBM procedures in the IEFG formulation, have been proven by comparison with experimental and mesh-based numerical results reported in the literature. The results obtained in this study have revealed that a proper extension of the aforementioned penalty and stabilization techniques to the IEFG formulation, allows the achievement of accurate and stable numerical results during the solution of incompressible fluid-dynamics problems.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science SA  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
ELEMENT-FREE GALERKIN  
dc.subject
IMMERSED BOUNDARY METHODS  
dc.subject
NAVIER–STOKES  
dc.subject
PENALTY  
dc.subject
REDUCED INTEGRATION  
dc.subject
STREAMLINE UPWIND  
dc.subject.classification
Mecánica Aplicada  
dc.subject.classification
Ingeniería Mecánica  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.subject.classification
Matemática Aplicada  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.subject.classification
Física de los Fluidos y Plasma  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
A plausible extension of standard penalty, streamline upwind and immersed boundary techniques to the improved element-free Galerkin-based solution of incompressible Navier–Stokes equations  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2021-03-15T14:35:45Z  
dc.journal.volume
372  
dc.journal.number
113380  
dc.journal.pagination
1-27  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Álvarez Hostos, Juan Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina. Universidad Central de Venezuela; Venezuela  
dc.description.fil
Fil: Cruchaga, Marcela A.. Universidad de Santiago de Chile; Chile  
dc.description.fil
Fil: Fachinotti, Victor Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina  
dc.description.fil
Fil: Zambrano Carrillo, Javier Alexander. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina  
dc.description.fil
Fil: Zamora Ramirez, Esteban Alonso. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina  
dc.journal.title
Computer Methods in Applied Mechanics and Engineering  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.cma.2020.113380  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S004578252030565X