Mostrar el registro sencillo del ítem
dc.contributor.author
Angelini, Julia
dc.contributor.author
Faviere, Gabriela Soledad
dc.contributor.author
Bortolotto, Eugenia Belén
dc.contributor.author
Arroyo, Luis Enrique
dc.contributor.author
Valentini, Gabriel Hugo
dc.contributor.author
Cervigni, Gerardo Domingo Lucio
dc.date.available
2021-09-06T20:01:31Z
dc.date.issued
2019-06
dc.identifier.citation
Angelini, Julia; Faviere, Gabriela Soledad; Bortolotto, Eugenia Belén; Arroyo, Luis Enrique; Valentini, Gabriel Hugo; et al.; Biplot pattern interaction analysis and statistical test for crossover and non-crossover genotype-by-environment interaction in peach; Elsevier Science; Scientia Horticulturae; 252; 6-2019; 298-309
dc.identifier.issn
0304-4238
dc.identifier.uri
http://hdl.handle.net/11336/139741
dc.description.abstract
The presence of genotype-by-environment interactions (GE) remains a major issue for crop improvement. The aims of this work were: i) to compare the efficiency of parametric and non-parametric methods to test the presence of crossover (COI) and non-crossover GE (NCOI), ii) visual examination of the relationships between environments and genotypes tested, and iii) to test the effectiveness of dividing the peach season evaluations into mega-environments (ME) using the biplot based on AMMI and SREG. Non-parametric ANOVA was more useful than the parametric approach because it can distinguish between the presence of COI and NCOI. Three test methods, suitable for investigating two-factor interactions, were used to show that interactions between genotypes and environment involve significant changes in rank order. The Yang test based on mixed model theory combined with interaction-wise error rate was the most sensitive to detect COI, while the Gail and Simon, as well as the Azzalini and Cox methods were conservative. Which-won-where pattern was followed with four and two ME were found with AMMI and SREG, respectively. Entries G16 (Hermosillo P), G21 (María Emilia N), G2 (84.351.029 N) and G8 (Cotogna del Berti P) showed specific adaptability to ME-1, ME-2, ME-3 and ME-4 generated by AMMI, respectively; while G28 (Sunprince P) exhibited specific adaptation to ME-1 and G16 in ME2 which were created by SREG. Average environment coordination (AEC) view of the GGE biplot involving the seven environments identified G10 (Flameprince P) as the most stable and high-yielding genotype across environments, unlike G8 and G28, which showed only high yields. Results indicated that AMMI and GGE biplots are informative methods to explore stability and adaptation patterns of genotypes in practical plant breeding and in subsequent variety recommendations. In addition, finding ME helps identify the most suitable peach genotypes that can be recommended for areas within a specific ME in either one or more test locations.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier Science
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
MULTI-ENVIRONMENTS TRIALS
dc.subject
MULTIVARIATE METHODS
dc.subject
PARAMETRIC AND NON-PARAMETRIC STATISTICS
dc.subject
PEACH BREEDING
dc.subject
PRUNUS PERSICA L.
dc.subject.classification
Otras Ciencias Biológicas
dc.subject.classification
Ciencias Biológicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Biplot pattern interaction analysis and statistical test for crossover and non-crossover genotype-by-environment interaction in peach
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2020-11-25T17:36:16Z
dc.journal.volume
252
dc.journal.pagination
298-309
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Angelini, Julia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro de Estudios Fotosintéticos y Bioquímicos. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Centro de Estudios Fotosintéticos y Bioquímicos; Argentina
dc.description.fil
Fil: Faviere, Gabriela Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro de Estudios Fotosintéticos y Bioquímicos. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Centro de Estudios Fotosintéticos y Bioquímicos; Argentina
dc.description.fil
Fil: Bortolotto, Eugenia Belén. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro de Estudios Fotosintéticos y Bioquímicos. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Centro de Estudios Fotosintéticos y Bioquímicos; Argentina
dc.description.fil
Fil: Arroyo, Luis Enrique. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Buenos Aires Norte. Estación Experimental Agropecuaria San Pedro; Argentina
dc.description.fil
Fil: Valentini, Gabriel Hugo. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Buenos Aires Norte. Estación Experimental Agropecuaria San Pedro; Argentina
dc.description.fil
Fil: Cervigni, Gerardo Domingo Lucio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro de Estudios Fotosintéticos y Bioquímicos. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Centro de Estudios Fotosintéticos y Bioquímicos; Argentina
dc.journal.title
Scientia Horticulturae
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.scienta.2019.03.024
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0304423819301980
Archivos asociados