Mostrar el registro sencillo del ítem

dc.contributor.author
Miccio, Luis Alejandro  
dc.contributor.author
Schwartz, Gustavo A.  
dc.date.available
2021-09-01T12:38:21Z  
dc.date.issued
2020-04  
dc.identifier.citation
Miccio, Luis Alejandro; Schwartz, Gustavo A.; From chemical structure to quantitative polymer properties prediction through convolutional neural networks; Elsevier; Polymer; 193; 4-2020; 1-7  
dc.identifier.issn
0032-3861  
dc.identifier.uri
http://hdl.handle.net/11336/139414  
dc.description.abstract
In this work convolutional-fully connected neural networks were designed and trained to predict the glass transition temperature of polymers based only on their chemical structure. This approach has shown to successfully predict the Tg of unknown polymers with average relative errors as low as 6%. Several networks with different architecture or hiperparameters were successfully trained using a previously studied glass transition temperatures dataset for validation, and then the same method was employed for an extended dataset, with larger Tg dispersion and polymer´s structure variability. This approach has shown to be accurate and reliable, and does not require any time consuming or expensive measurements and calculations as inputs. Furthermore, it is expected that this method can be easily extended to predict other properties. The possibility of predicting the properties of polymers not even synthesized will save time and resources for industrial development as well as accelerate the scientific understanding of structure-properties relationships in polymer science.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Deep learningNeural network  
dc.subject
Smart design  
dc.subject
QSPR  
dc.subject
Properties prediction  
dc.subject
Deep learning  
dc.subject
Neural network  
dc.subject.classification
Ingeniería de los Materiales  
dc.subject.classification
Ingeniería de los Materiales  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
From chemical structure to quantitative polymer properties prediction through convolutional neural networks  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2021-08-19T20:34:07Z  
dc.journal.volume
193  
dc.journal.pagination
1-7  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Miccio, Luis Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina  
dc.description.fil
Fil: Schwartz, Gustavo A.. Consejo Superior de Investigaciones Científicas; España  
dc.journal.title
Polymer  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0032386120301786  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.polymer.2020.122341