Mostrar el registro sencillo del ítem

dc.contributor.author
Gangle, Rocco  
dc.contributor.author
Gianluca, Caterina  
dc.contributor.author
Tohmé, Fernando Abel  
dc.date.available
2021-08-31T14:27:12Z  
dc.date.issued
2020-07-15  
dc.identifier.citation
Gangle, Rocco; Gianluca, Caterina; Tohmé, Fernando Abel; A constructive sequence algebra for the calculus of indications; Springer; Soft Computing; 24; 15-7-2020; 17621-17629  
dc.identifier.issn
1432-7643  
dc.identifier.uri
http://hdl.handle.net/11336/139306  
dc.description.abstract
In this paper, we investigate some aspects of Spencer–Brown’s Calculus of Indications. Drawing from earlier work by Kauffman and Varela, we present a new categorical framework that allows to characterize the construction of infinite arithmetic expressions as sequences taking values in grossone.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
CALCULUS OF INDICATIONS  
dc.subject
CATEGORY THEORY  
dc.subject
SEQUENCES  
dc.subject
GROSSONE  
dc.subject.classification
Otras Matemáticas  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
A constructive sequence algebra for the calculus of indications  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2021-08-27T20:49:05Z  
dc.identifier.eissn
1433-7479  
dc.journal.volume
24  
dc.journal.pagination
17621-17629  
dc.journal.pais
Suiza  
dc.description.fil
Fil: Gangle, Rocco. Endicott College. Center for Diagrammatic and Computational Philosophy; Estados Unidos  
dc.description.fil
Fil: Gianluca, Caterina. Endicott College. Center for Diagrammatic and Computational Philosophy; Estados Unidos  
dc.description.fil
Fil: Tohmé, Fernando Abel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina  
dc.journal.title
Soft Computing  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00500-020-05121-1  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s00500-020-05121-1