Mostrar el registro sencillo del ítem
dc.contributor.author
Caiafa, César Federico
dc.contributor.author
Wang, Ziyao
dc.contributor.author
Sole Casals, Jordi
dc.contributor.author
Zhao, Qibin
dc.date.available
2021-08-31T01:53:06Z
dc.date.issued
2021
dc.identifier.citation
Learning from Incomplete Features by Simultaneous Training of Neural Networks and Sparse Coding; IEEE Computer Society Conference on Computer Vision and Pattern Recognition 2021; New York; Estados Unidos; 2021; 1-11
dc.identifier.uri
http://hdl.handle.net/11336/139273
dc.description.abstract
In this paper, the problem of training a classifier on a dataset with incomplete features is addressed. We assume that different subsets of features (random or structured) are available at each data instance. This situation typically occurs in the applications when not all the features are collected for every data sample. A new supervised learning method is developed to train a general classifier, such as a logistic regression or a deep neural network, using only a subset of features per sample, while assuming sparse representations of data vectors on an unknown dictionary. Sufficient conditions are identified, such that, if it is possible to train a classifier on incomplete observations so that their reconstructions are well separated by a hyperplane, then the same classifier also correctly separates the original (unobserved) data samples. Extensive simulation results on synthetic and well-known datasets are presented that validate our theoretical findings and demonstrate the effectiveness of the proposed method compared to traditional data imputation approaches and one state-of-the-art algorithm.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
IEEE
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Supervised learning
dc.subject
Missing data
dc.subject
Deep learning
dc.subject
Sparse Coding
dc.subject.classification
Ciencias de la Computación
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Learning from Incomplete Features by Simultaneous Training of Neural Networks and Sparse Coding
dc.type
info:eu-repo/semantics/publishedVersion
dc.type
info:eu-repo/semantics/conferenceObject
dc.type
info:ar-repo/semantics/documento de conferencia
dc.date.updated
2021-08-23T15:16:28Z
dc.journal.pagination
1-11
dc.journal.pais
Estados Unidos
dc.journal.ciudad
New York
dc.description.fil
Fil: Caiafa, César Federico. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; Argentina
dc.description.fil
Fil: Wang, Ziyao. South East University; China
dc.description.fil
Fil: Sole Casals, Jordi. University of Vic; España
dc.description.fil
Fil: Zhao, Qibin. Center for Advanced Intelligence Project; Japón
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://l2id.github.io/index.html
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://l2id.github.io/L2ID@CVPR2021_Accepted_paper_list.html
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/2011.14047
dc.conicet.rol
Autor
dc.conicet.rol
Autor
dc.conicet.rol
Autor
dc.coverage
Internacional
dc.type.subtype
Conferencia
dc.description.nombreEvento
IEEE Computer Society Conference on Computer Vision and Pattern Recognition 2021
dc.date.evento
2021-06-19
dc.description.ciudadEvento
New York
dc.description.paisEvento
Estados Unidos
dc.type.publicacion
Book
dc.description.institucionOrganizadora
IEEE
dc.source.libro
Proceedings of IEEE
dc.date.eventoHasta
2021-06-25
dc.type
Conferencia
Archivos asociados