Mostrar el registro sencillo del ítem

dc.contributor.author
Caiafa, César Federico  
dc.contributor.author
Wang, Ziyao  
dc.contributor.author
Sole Casals, Jordi  
dc.contributor.author
Zhao, Qibin  
dc.date.available
2021-08-31T01:53:06Z  
dc.date.issued
2021  
dc.identifier.citation
Learning from Incomplete Features by Simultaneous Training of Neural Networks and Sparse Coding; IEEE Computer Society Conference on Computer Vision and Pattern Recognition 2021; New York; Estados Unidos; 2021; 1-11  
dc.identifier.uri
http://hdl.handle.net/11336/139273  
dc.description.abstract
In this paper, the problem of training a classifier on a dataset with incomplete features is addressed. We assume that different subsets of features (random or structured) are available at each data instance. This situation typically occurs in the applications when not all the features are collected for every data sample. A new supervised learning method is developed to train a general classifier, such as a logistic regression or a deep neural network, using only a subset of features per sample, while assuming sparse representations of data vectors on an unknown dictionary. Sufficient conditions are identified, such that, if it is possible to train a classifier on incomplete observations so that their reconstructions are well separated by a hyperplane, then the same classifier also correctly separates the original (unobserved) data samples. Extensive simulation results on synthetic and well-known datasets are presented that validate our theoretical findings and demonstrate the effectiveness of the proposed method compared to traditional data imputation approaches and one state-of-the-art algorithm.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
IEEE  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Supervised learning  
dc.subject
Missing data  
dc.subject
Deep learning  
dc.subject
Sparse Coding  
dc.subject.classification
Ciencias de la Computación  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Learning from Incomplete Features by Simultaneous Training of Neural Networks and Sparse Coding  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.type
info:eu-repo/semantics/conferenceObject  
dc.type
info:ar-repo/semantics/documento de conferencia  
dc.date.updated
2021-08-23T15:16:28Z  
dc.journal.pagination
1-11  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
New York  
dc.description.fil
Fil: Caiafa, César Federico. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; Argentina  
dc.description.fil
Fil: Wang, Ziyao. South East University; China  
dc.description.fil
Fil: Sole Casals, Jordi. University of Vic; España  
dc.description.fil
Fil: Zhao, Qibin. Center for Advanced Intelligence Project; Japón  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://l2id.github.io/index.html  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://l2id.github.io/L2ID@CVPR2021_Accepted_paper_list.html  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/2011.14047  
dc.conicet.rol
Autor  
dc.conicet.rol
Autor  
dc.conicet.rol
Autor  
dc.coverage
Internacional  
dc.type.subtype
Conferencia  
dc.description.nombreEvento
IEEE Computer Society Conference on Computer Vision and Pattern Recognition 2021  
dc.date.evento
2021-06-19  
dc.description.ciudadEvento
New York  
dc.description.paisEvento
Estados Unidos  
dc.type.publicacion
Book  
dc.description.institucionOrganizadora
IEEE  
dc.source.libro
Proceedings of IEEE  
dc.date.eventoHasta
2021-06-25  
dc.type
Conferencia