Mostrar el registro sencillo del ítem
dc.contributor.author
Olivieri, Alejandro Cesar
dc.contributor.author
Allegrini, Franco
dc.contributor.other
Brown, Steven
dc.contributor.other
Tauler, Romà
dc.contributor.other
Walczak, Beata
dc.date.available
2021-08-31T01:45:31Z
dc.date.issued
2020
dc.identifier.citation
Olivieri, Alejandro Cesar; Allegrini, Franco; Figures of Merit; Elsevier; 2; 2020; 441-463
dc.identifier.isbn
978-0444641656
dc.identifier.uri
http://hdl.handle.net/11336/139268
dc.description.abstract
Figures of merit are numerical parameters, usually employed for comparing analytical methods in terms of predictive ability and detection capabilities. The estimation of analytical figures of merit for calibrations based on first- and higher-order data has become an active research field in recent years. The starting approach was to extend the well-known univariate calibration concepts todata of increasing complexity. For example, the sensitivity, which is a key figure of merit for qualifying analytical methods, is correctly interpreted in the framework of classical univariate calibration as the change in response (the analytical signal) for a given change in stimulus (the analyte concentration). This concept was extended to multivariate and multi-way calibration using the net analyte signal (NAS) as an analogue of the raw instrumental signal in univariate calibration.5,6 The notion of net analyte signal is attractive, because it measures, in principle, the portion of the overall signal which can be directly employed to quantitate a givenanalyte in the presence of interferents. However, this approach proved to be unsuccessful to estimate the sensitivity, particularly in multi-way calibration.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
QUIMIOMETRÍA
dc.subject
QUIMICA ANALITICA
dc.subject
CIFRAS DE MERITO
dc.subject.classification
Química Analítica
dc.subject.classification
Ciencias Químicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Figures of Merit
dc.type
info:eu-repo/semantics/publishedVersion
dc.type
info:eu-repo/semantics/bookPart
dc.type
info:ar-repo/semantics/parte de libro
dc.date.updated
2021-06-07T16:10:41Z
dc.journal.volume
2
dc.journal.pagination
441-463
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Olivieri, Alejandro Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; Argentina
dc.description.fil
Fil: Allegrini, Franco. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; Argentina
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/B978-0-12-409547-2.14612-8
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/B9780124095472146128
dc.conicet.paginas
2944
dc.source.titulo
Comprehensive Chemometrics: Chemical and Biochemical Data Analysis
dc.conicet.nroedicion
2
Archivos asociados