Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Ensemble learning application to discover new trypanothione synthetase inhibitors

Alice, Juan IgnacioIcon ; Bellera, Carolina LeticiaIcon ; Benítez, Diego; Comini, Marcelo A.; Duchowicz, Pablo RománIcon ; Talevi, AlanIcon
Fecha de publicación: 15/07/2021
Editorial: Springer
Revista: Molecular Diversity
ISSN: 1381-1991
e-ISSN: 1573-501X
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias Químicas

Resumen

Trypanosomatid-caused diseases are among the neglectedinfectious diseases with the highest disease burden, affecting about 27 millionpeople worldwide and, in particular, socio-economically vulnerable populations.Trypanothione synthetase (TryS) is considered one of the most attractive drugtargets within the thiol-polyamine metabolism of typanosomatids, being unique,essential and druggable. Here, we have compiled a dataset of 401 T. brucei TrySinhibitors that includes compounds with inhibitory data reported in theliterature, but also in-house acquired data. QSAR classifiers were derived andvalidated from such dataset, using publicly available and open-source software,thus assuring the portability of the obtained models. The performance androbustness of the resulting models were substantially improved through ensemblelearning. The performance of the individual models and the model ensembles wasfurther assessed through retrospective virtual screening campaigns. At last, asan application example, the chosen model-ensemble has been applied in aprospective virtual screening campaign on DrugBank 5.1.6 compound library. Allthe in-house scripts used in this study are available on request, whereas thedataset has been included as supplementary material.
Palabras clave: ENSEMBLE LEARNING , MACHINE LEARNING , QSAR , TRYPANOSOMA CRUZI , CHAGAS DISEASE , TRYPANOTHIONE SYNTHETASE
Ver el registro completo
 
Archivos asociados
Tamaño: 10.01Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/139254
DOI: http://dx.doi.org/10.1007/s11030-021-10265-9
URL: https://link.springer.com/10.1007/s11030-021-10265-9
Colecciones
Articulos(CCT - LA PLATA) [7034]
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - LA PLATA
Citación
Alice, Juan Ignacio; Bellera, Carolina Leticia; Benítez, Diego; Comini, Marcelo A.; Duchowicz, Pablo Román; et al.; Ensemble learning application to discover new trypanothione synthetase inhibitors; Springer; Molecular Diversity; 25; 15-7-2021; 1361-1373
Compartir
Altmétricas
 
Estadísticas
Visualizaciones: 32
Descargas: 0

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • Twitter
  • Instagram
  • YouTube
  • Sound Cloud

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

Ministerio
https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES