Artículo
Linear independence of time–frequency translates in Lp spaces
Fecha de publicación:
24/07/2020
Editorial:
Birkhauser Boston Inc
Revista:
Journal Of Fourier Analysis And Applications
ISSN:
1069-5869
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We study the Heil-Ramanathan-Topiwala conjecture in L^p spaces by reformulating it as a fixed point problem. This reformulation shows that a function with linearly dependent time-frequency translates has a very rigid structure, which is encoded in a family of linear operators. This is used to give an elementary proof that if f∈ L^p(R) , p∈ [ 1 , 2 ] , and Λ ⊆ R× R is contained in a lattice then the set of time frequency translates (f(a,b))(a,b)∈Λ is linearly independent. Our proof also works for the case 2 < p< ∞ if Λ is contained in a lattice of the form αZ× βZ.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IAM)
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Citación
Antezana, Jorge Abel; Bruna, Joaquim; Pujals, Enrique; Linear independence of time–frequency translates in Lp spaces; Birkhauser Boston Inc; Journal Of Fourier Analysis And Applications; 26; 63; 24-7-2020; 1-15
Compartir
Altmétricas