Mostrar el registro sencillo del ítem
dc.contributor.author
Alemany, Juan Manuel

dc.contributor.author
Kasprzyk, Leszek
dc.contributor.author
Magnago, Fernando

dc.date.available
2021-08-25T15:59:13Z
dc.date.issued
2018-07
dc.identifier.citation
Alemany, Juan Manuel; Kasprzyk, Leszek; Magnago, Fernando; Effects of binary variables in mixed integer linear programming based unit commitment in large-scale electricity markets; Elsevier Science SA; Electric Power Systems Research; 160; 7-2018; 429-438
dc.identifier.issn
0378-7796
dc.identifier.uri
http://hdl.handle.net/11336/138907
dc.description.abstract
Mixed integer linear programming is one of the main approaches used to solve unit commitment problems. Due to the computational complexity of unit commitment problems, several researches remark the benefits of using less binary variables or relaxing them for the branch-and-cut algorithm. However, integrality constraints relaxation seems to be case dependent because there are many instances where applying it may not improve the computational burden. In addition, there is a lack of extensive numerical experiments evaluating the effects of the relaxation of binary variables in mixed integer linear programming based unit commitment. Therefore, the primary purpose of this work is to analyze the effects of binary variables and compare different relaxations, supported by extensive computational experiments. To accomplish this objective, two power systems are used for the numerical tests: the IEEE118 test system and a very large scale real system. The results suggest that a direct link between the relaxation of binary variables and computational burden cannot be easily assured in the general case. Therefore, relaxing binary variables should not be used as a general rule-of-practice to improve computational burden, at least, until each particular model is tested under different load scenarios and formulations to quantify the final effects of binary variables on the specific UC implementation. The secondary aim of this work is to give some preliminary insight into the reasons that could be supporting the binary relaxation in some UC instances.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier Science SA

dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
BINARY VARIABLES RELAXATION
dc.subject
BRANCH AND CUT ALGORITHM
dc.subject
DAY-AHEAD ELECTRICITY MARKET CLEARING
dc.subject
MIXED INTEGER LINEAR PROGRAMMING
dc.subject
UNIT COMMITMENT
dc.subject.classification
Ingeniería Eléctrica y Electrónica

dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información

dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS

dc.title
Effects of binary variables in mixed integer linear programming based unit commitment in large-scale electricity markets
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2021-08-13T16:27:47Z
dc.journal.volume
160
dc.journal.pagination
429-438
dc.journal.pais
Países Bajos

dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Alemany, Juan Manuel. Universidad Nacional de Río Cuarto. Facultad de Ingeniería. Departamento de Electricidad y Electrónica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina
dc.description.fil
Fil: Kasprzyk, Leszek. Poznan University of Technology. Institute of Electrical and Electronics Industry; Polonia
dc.description.fil
Fil: Magnago, Fernando. Universidad Nacional de Río Cuarto. Facultad de Ingeniería. Departamento de Electricidad y Electrónica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Nexant Inc; Estados Unidos
dc.journal.title
Electric Power Systems Research

dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.epsr.2018.03.019
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://linkinghub.elsevier.com/retrieve/pii/S0378779618300919
Archivos asociados