Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Control de falsos descubrimientos en mapeo asociativo con poblaciones estructuradas

Título: False discovery rate control in association mapping with genetically structured populations
Peña Malavera, Andrea NataliaIcon ; Bruno, Cecilia InesIcon ; Balzarini, Monica GracielaIcon
Fecha de publicación: 07/2018
Editorial: Sociedad Argentina de Genética
Revista: Journal of Basic and Applied Genetics
ISSN: 1852-6233
Idioma: Español
Tipo de recurso: Artículo publicado
Clasificación temática:
Estadística y Probabilidad

Resumen

 
Las pruebas de asociación entre marcadores moleculares y variables fenotípicas son cruciales para la identificación de QTL (Quantitative Trait Loci). Los avances biotecnológicos incrementaron la disponibilidad de marcadores genéticos y consecuentemente el número de pruebas de la asociación fenotipo-genotipo. El incremento de pruebas de significancia estadística a realizar en simultaneo (multiplicidad) demanda correcciones de los valores-p obtenidos para cada prueba de hipótesis de manera de mantener acotada las tasas de error para la familia de pruebas de asociación. Las correcciones estadísticas clásicas para el problema de multiplicidad, como Bonferroni, el método de control de la tasa de falsos descubrimientos (FDR) y el número efectivo de pruebas (Meff), son ampliamente usadas, pero fueron desarrolladas para datos independientes. Sin embargo, cuando las poblaciones de mapeo están genéticamente estructuradas los datos dejan de ser independientes. En este trabajo, proponemos un método de corrección por multiplicidad basado en estimación del número efectivo de pruebas desde un modelo que ajusta por la estructura de correlación subyacente. Se evalúa el desempeño del procedimiento propuesto a través del análisis de los valores-p obtenidos para un conjunto de QTL simulados. Los resultados sugieren que el método propuesto provee control de la tasa de falsos positivos y presenta mayor potencia que otros métodos de corrección por multiplicidad usados en mapeo asociativo.
 
The association tests between molecular markers and phenotypic traits are crucial for the Quantitative Trait Loci (QTL) identification. Biotechnological advances increased the molecular marker information; consequently, the number of genotype-phenotype association tests required incremented too. The multiple statistical inferences (multiplicity) demand corrections of the p-values obtained for each comparison in order to keep limited the error rates for the family of association tests. However, classic statistical correction methods such as Bonferroni, False Discovery Rate (FDR) and the Effective Number of Independent Test (Meff) were developed in the context of independent data. Wherever, when the population genetic structure is present, the data are no longer independent. In this paper, we propose a method of correction for multiplicity based on estimation of the effective number of tests from a model that adjust for the underlying correlation structure. We evaluate the performance of the proposed procedure in the estimation of p-values for a set of simulated QTL. The results suggest that the proposed method provides control of FDR and has more power than other methods for multiplicity correction used in association mapping.
 
Palabras clave: MULTIPLICIDAD , ESTUDIOS DE ASOCIACIÓN , NÚMERO EFECTIVO DE PRUEBAS DE HIPÓTESIS , MODELOS LINEALES
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.572Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/138905
URL: https://sag.org.ar/jbag/project/vol-xxix-issue-1/
URL: https://sag.org.ar/jbag/wp-content/uploads/2019/09/BAG_VXXIX_1_2018_ART4_WEB.pdf
Colecciones
Articulos(CCT - CORDOBA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - CORDOBA
Citación
Peña Malavera, Andrea Natalia; Bruno, Cecilia Ines; Balzarini, Monica Graciela; Control de falsos descubrimientos en mapeo asociativo con poblaciones estructuradas; Sociedad Argentina de Genética; Journal of Basic and Applied Genetics; XXIX; 1; 7-2018; 37-49
Compartir

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES