Mostrar el registro sencillo del ítem
dc.contributor.author
Kozlowski, Diego
dc.contributor.author
Semeshenko, Viktoriya
dc.contributor.author
Molinari, Andrea
dc.date.available
2021-08-25T00:55:02Z
dc.date.issued
2021-02-04
dc.identifier.citation
Kozlowski, Diego; Semeshenko, Viktoriya; Molinari, Andrea; Latent dirichlet allocation model for world trade analysis; Public Library of Science; Plos One; 16; 2; 4-2-2021; 1-18
dc.identifier.issn
1932-6203
dc.identifier.uri
http://hdl.handle.net/11336/138822
dc.description.abstract
International trade is one of the classic areas of study in economics. Its empirical analysis is a complex problem, given the amount of products, countries and years. Nowadays, given the availability of data, the tools used for the analysis can be complemented and enriched with new methodologies and techniques that go beyond the traditional approach. This new possibility opens a research gap, as new, data-driven, ways of understanding international trade, can help our understanding of the underlying phenomena. The present paper shows the application of the Latent Dirichlet allocation model, a well known technique in the area of Natural Language Processing, to search for latent dimensions in the product space of international trade, and their distribution across countries over time. We apply this technique to a dataset of countries exports of goods from 1962 to 2016. The results show that this technique can encode the main specialisation patterns of international trade. On the countrylevel analysis, the findings show the changes in the specialisation patterns of countries over time. As traditional international trade analysis demands expert knowledge on a multiplicity of indicators, the possibility of encoding multiple known phenomena under a unique indicator is a powerful complement for traditional tools, as it allows top-down data-driven studies.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Public Library of Science
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/
dc.subject
Latent Dirichlet allocation
dc.subject
Trade data
dc.subject
NLP
dc.subject.classification
Economía, Econometría
dc.subject.classification
Economía y Negocios
dc.subject.classification
CIENCIAS SOCIALES
dc.title
Latent dirichlet allocation model for world trade analysis
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2021-07-30T19:17:21Z
dc.journal.volume
16
dc.journal.number
2
dc.journal.pagination
1-18
dc.journal.pais
Estados Unidos
dc.journal.ciudad
California
dc.description.fil
Fil: Kozlowski, Diego. University of Luxembourg; Luxemburgo
dc.description.fil
Fil: Semeshenko, Viktoriya. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Interdisciplinario de Economía Política de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Económicas. Instituto Interdisciplinario de Economía Política de Buenos Aires; Argentina
dc.description.fil
Fil: Molinari, Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Interdisciplinario de Economía Política de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Económicas. Instituto Interdisciplinario de Economía Política de Buenos Aires; Argentina
dc.journal.title
Plos One
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1371/journal.pone.0245393
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0245393
Archivos asociados