Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Evento

A Sparse Tensor Decomposition with Multi-Dictionary Learning Applied to Diffusion Brain Imaging

Caiafa, César FedericoIcon ; Cichocki, Andrzej; Pestilli, Franco
Tipo del evento: Workshop
Nombre del evento: Signal Processing with Adaptive Sparse Structured Representations workshop
Fecha del evento: 05/06/2017
Institución Organizadora: University of Lisbon;
Título del Libro: Book of abstract: Signal Processing with Adaptive Sparse Structured Representations 2017
Editorial: University of Lisbon
Idioma: Inglés
Clasificación temática:
Ciencias de la Información y Bioinformática

Resumen

We use a multidimensional signal representation that integrates diffusion Magnetic Resonance Imaging (dMRI) and tractography (brain connections) using sparse tensor decomposition. The representation encodes brain connections (fibers) into a very-large, but sparse, core tensor and allows to predict dMRI measurements based on a dictionary of diffusion signals. We propose an algorithm to learn the constituent parts of the model from a dataset. The algorithm assumes a tractography model (support of core tensor) and iteratively minimizes the Frobenius norm of the error as a function of the dictionary atoms, the values of nonzero entries in the sparse core tensor and the fiber weights. We use a nonparametric dictionary learning (DL) approach to estimate signal atoms. Moreover, the algorithm is able to learn multiple dictionaries associated to different brain locations (voxels) allowing for mapping distinctive tissue types. We illustrate the algorithm through results obtained on a large in-vivo high-resolution dataset.
Palabras clave: Diffusion MRI , Sparse Decomposition , Tensor Decomposition , Dictionary learning
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 3.091Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/138585
URL: http://spars2017.lx.it.pt
URL: http://spars2017.lx.it.pt/index_files/papers/SPARS2017_Paper_143.pdf
Colecciones
Eventos(IAR)
Eventos de INST.ARG.DE RADIOASTRONOMIA (I)
Citación
A Sparse Tensor Decomposition with Multi-Dictionary Learning Applied to Diffusion Brain Imaging; Signal Processing with Adaptive Sparse Structured Representations workshop; Lisboa; Portugal; 2017; 1-2
Compartir

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES