Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

An epidemic model for COVID-19 transmission in Argentina: Exploration of the alternating quarantine and massive testing strategies

Vassallo, LautaroIcon ; Pérez, Ignacio AugustoIcon ; Alvarez Zuzek, Lucila G.; Amaya, Julián; Torres, Marcos F.; Valdez, Lucas DanielIcon ; la Rocca, Cristian ErnestoIcon ; Braunstein, Lidia Adriana
Fecha de publicación: 07/2021
Editorial: Elsevier Science Inc.
Revista: Mathematical Biosciences
ISSN: 0025-5564
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias Naturales y Exactas

Resumen

The COVID-19 pandemic has challenged authorities at different levels of government administration aroundthe globe. When faced with diseases of this severity, it is useful for the authorities to have prediction tools to estimate in advance the impact on the health system as well as the human, material, and economic resources that will be necessary. In this paper, we construct an extended Susceptible?Exposed?Infected?Recovered modelthat incorporates the social structure of Mar del Plata, the 4◦ most inhabited city in Argentina and head ofthe Municipality of General Pueyrredón. Moreover, we consider detailed partitions of infected individualsaccording to the illness severity, as well as data of local health resources, to bring predictions closer to thelocal reality. Tuning the corresponding epidemic parameters for COVID-19, we study an alternating quarantinestrategy: a part of the population can circulate without restrictions at any time, while the rest is equally dividedinto two groups and goes on successive periods of normal activity and lockdown, each one with a durationof days. We also implement a random testing strategy with a threshold over the population. We found that = 7 is a good choice for the quarantine strategy since it reduces the infected population and, conveniently,it suits a weekly schedule. Focusing on the health system, projecting from the situation as of September 30,we foresee a difficulty to avoid saturation of the available ICU, given the extremely low levels of mobility thatwould be required. In the worst case, our model estimates that four thousand deaths would occur, of which30% could be avoided with proper medical attention. Nonetheless, we found that aggressive testing wouldallow an increase in the percentage of people that can circulate without restrictions, and the medical facilitiesto deal with the additional critical patients would be relatively low.
Palabras clave: MATHEMATICAL EPIDEMIOLOGY , COMPARTMENTAL MODELS , COVID-19 IN MAR DEL PLATA , DATA ANALYSIS , COVID-19
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 4.091Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Atribución-NoComercial-SinDerivadas 2.5 Argentina (CC BY-NC-ND 2.5 AR)
Identificadores
URI: http://hdl.handle.net/11336/138515
URL: https://linkinghub.elsevier.com/retrieve/pii/S002555642100095X
DOI: http://dx.doi.org/10.1016/j.mbs.2021.108664
Colecciones
Articulos(IFIMAR)
Articulos de INST.DE INVESTIGACIONES FISICAS DE MAR DEL PLATA
Citación
Vassallo, Lautaro; Pérez, Ignacio Augusto; Alvarez Zuzek, Lucila G.; Amaya, Julián; Torres, Marcos F.; et al.; An epidemic model for COVID-19 transmission in Argentina: Exploration of the alternating quarantine and massive testing strategies; Elsevier Science Inc.; Mathematical Biosciences; 7-2021; 1-35
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES