Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Engaging end-user driven recommender systems: personalization through web augmentation

Wischenbart, Martin; Firmenich, Sergio DamianIcon ; Rossi, Gustavo HéctorIcon ; Bosetti, Gabriela AlejandraIcon ; Kapsammer, Elisabeth
Fecha de publicación: 10/2021
Editorial: Springer
Revista: Multimedia Tools And Applications
ISSN: 1380-7501
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Computación

Resumen

In the past decades recommender systems have become a powerful tool to improve personalization on the Web. Yet, many popular websites lack such functionality, its implementation usually requires certain technical skills, and, above all, its introduction is beyond the scope and control of end-users. To alleviate these problems, this paper presents a novel tool to empower end-users without programming skills, without any involvement of website providers, to embed personalized recommendations of items into arbitrary websites on client-side. For this we have developed a generic meta-model to capture recommender system configuration parameters in general as well as in a web augmentation context. Thereupon, we have implemented a wizard in the form of an easy-to-use browser plug-in, allowing the generation of so-called user scripts, which are executed in the browser to engage collaborative filtering functionality from a provided external rest service. We discuss functionality and limitations of the approach, and in a study with end-users we assess the usability and show its suitability for combining recommender systems with web augmentation techniques, aiming to empower end-users to implement controllable recommender applications for a more personalized browsing experience.
Palabras clave: BROWSER-SIDE TRANS-CODING , CLIENT-SIDE PERSONALIZATION , CONTROLLABILITY OF RECOMMENDER SYSTEMS , END-USER DEVELOPMENT , END-USER PROGRAMMING , VISUAL PROGRAMMING , WEB AUGMENTATION
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 4.677Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution 2.5 Unported (CC BY 2.5)
Identificadores
URI: http://hdl.handle.net/11336/138404
DOI: http://dx.doi.org/10.1007/s11042-020-09803-8
URL: https://link.springer.com/article/10.1007/s11042-020-09803-8
Colecciones
Articulos(CCT - LA PLATA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - LA PLATA
Citación
Wischenbart, Martin; Firmenich, Sergio Damian; Rossi, Gustavo Héctor; Bosetti, Gabriela Alejandra; Kapsammer, Elisabeth; Engaging end-user driven recommender systems: personalization through web augmentation; Springer; Multimedia Tools And Applications; 80; 5; 10-2021; 6785-6809
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES