Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

An explicit evolutionary approach for multiobjective energy consumption planning considering user preferences in smart homes

Nesmachnow, Sergio; Rossit, Diego GabrielIcon ; Toutouh, Jamal; Luna, Francisco
Fecha de publicación: 12/05/2021
Editorial: Growing Science
Revista: International Journal of Industrial Engineering Computations
ISSN: 1923-2926
e-ISSN: 1923-2934
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ingenierías y Tecnologías

Resumen

Modern Smart Cities are highly dependent on an efficient energy service since electricity is used in an increasing number of urban activities. In this regard, Time-of-Use prices for electricity is a widely implemented policy that has been successful to balance electricity consumption along the day and, thus, diminish the stress and risk of shortcuts of electric grids in peak hours. Indeed, residential customers may now schedule the use of deferrable electrical appliances in their smart homes in off-peak hours to reduce the electricity bill. In this context, this work aims to develop an automatic planning tool that accounts for minimizing the electricity costs and enhancing user satisfaction, allowing them to make more efficient usage of the energy consumed. The household energy consumption planning problem is addressed with a multiobjective evolutionary algorithm, for which problem-specific operators are devised, and a set of state-of-the-art greedy algorithms aim to optimize different criteria. The proposed resolution algorithms are tested over a set of realistic instances built using real-world energy consumption data, Time-of-Use prices from an electricity company, and user preferences estimated from historical information and sensor data. The results show that the evolutionary algorithm is able to improve upon the greedy algorithms both in terms of the electricity costs and user satisfaction and largely outperforms to a large extent the current strategy without planning implemented by users.
Palabras clave: SMART CITIES , ENERGY CONSUMPTION PLANNING PROBLEM , USER PREFERENCES , MULTIOBJECTIVE OPTIMIZATION , EVOLUTIONARY ALGORITHM , GREEDY ALGORITHMS
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.292Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/138290
URL: http://growingscience.com/beta/ijiec/4893-an-explicit-evolutionary-approach-for-
DOI: http://dx.doi.org/10.5267/j.ijiec.2021.5.005
URL: http://www.growingscience.com/ijiec/Vol12/IJIEC_2021_15.pdf
Colecciones
Articulos(INMABB)
Articulos de INST.DE MATEMATICA BAHIA BLANCA (I)
Citación
Nesmachnow, Sergio; Rossit, Diego Gabriel; Toutouh, Jamal; Luna, Francisco; An explicit evolutionary approach for multiobjective energy consumption planning considering user preferences in smart homes; Growing Science; International Journal of Industrial Engineering Computations; 12; 4; 12-5-2021; 365-380
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES