Mostrar el registro sencillo del ítem

dc.contributor.author
Tandeo, Pierre  
dc.contributor.author
Ailliot, Pierre  
dc.contributor.author
Bocquet, Marc  
dc.contributor.author
Carrassi, Alberto  
dc.contributor.author
Miyoshi, Takemasa  
dc.contributor.author
Pulido, Manuel Arturo  
dc.contributor.author
Zhen, Yicun  
dc.date.available
2021-08-13T17:05:37Z  
dc.date.issued
2020-10  
dc.identifier.citation
Tandeo, Pierre; Ailliot, Pierre; Bocquet, Marc; Carrassi, Alberto; Miyoshi, Takemasa; et al.; A review of innovation-based methods to jointly estimate model and observation error covariance matrices in ensemble data assimilation; Amer Meteorological Soc; Monthly Weather Review; 148; 10; 10-2020; 3973-3994  
dc.identifier.issn
0027-0644  
dc.identifier.uri
http://hdl.handle.net/11336/138281  
dc.description.abstract
Data assimilation combines forecasts from a numerical model with observations. Most of the current data assimilation algorithms consider the model and observation error terms as additive Gaussian noise, specified by their covariance matrices Q and R, respectively. These error covariances, and specifically their respective amplitudes, determine the weights given to the background (i.e., the model forecasts) and to the observations in the solution of data assimilation algorithms (i.e., the analysis). Consequently,Qand R matrices significantly impact the accuracy of the analysis. This review aims to present and to discuss, with a unified framework, different methods to jointly estimate the Q and R matrices using ensemble-based data assimilation techniques. Most of the methods developed to date use the innovations, defined as differences between the observations and the projection of the forecasts onto the observation space. These methods are based on two main statistical criteria: 1) the method of moments, in which the theoretical and empirical moments of the innovations are assumed to be equal, and 2) methods that use the likelihood of the observations, themselves contained in the innovations. The reviewed methods assume that innovations are Gaussian random variables, although extension to other distributions is possible for likelihood-based methods. The methods also show some differences in terms of levels of complexity and applicability to high-dimensional systems. The conclusion of the review discusses the key challenges to further develop estimation methods for Q and R. These challenges include taking into account time-varying error covariances, using limited observational coverage, estimating additional deterministic error terms, or accounting for correlated noise.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Amer Meteorological Soc  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
DATA ASSIMILATION  
dc.subject
UNCERTAINTY QUANTIFICATION  
dc.subject
MODEL ERROR  
dc.subject.classification
Meteorología y Ciencias Atmosféricas  
dc.subject.classification
Ciencias de la Tierra y relacionadas con el Medio Ambiente  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
A review of innovation-based methods to jointly estimate model and observation error covariance matrices in ensemble data assimilation  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-12-04T19:36:01Z  
dc.identifier.eissn
1520-0493  
dc.journal.volume
148  
dc.journal.number
10  
dc.journal.pagination
3973-3994  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Boston  
dc.description.fil
Fil: Tandeo, Pierre. Riken Food Co. Ltd.; Japón. Centre National de la Recherche Scientifique; Francia  
dc.description.fil
Fil: Ailliot, Pierre. Universite de Bretagne Occidentale; Francia  
dc.description.fil
Fil: Bocquet, Marc. Universite de Paris; Francia  
dc.description.fil
Fil: Carrassi, Alberto. Utrecht University; Países Bajos. University of Reading; Reino Unido  
dc.description.fil
Fil: Miyoshi, Takemasa. Riken Food Co. Ltd.; Japón  
dc.description.fil
Fil: Pulido, Manuel Arturo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Modelado e Innovación Tecnológica. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Modelado e Innovación Tecnológica; Argentina  
dc.description.fil
Fil: Zhen, Yicun. Centre National de la Recherche Scientifique; Francia  
dc.journal.title
Monthly Weather Review  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://journals.ametsoc.org/mwr/article/148/10/3973/354310/A-Review-of-InnovationBased-Methods-to-Jointly  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1175/MWR-D-19-0240.1