Mostrar el registro sencillo del ítem
dc.contributor.author
Tandeo, Pierre
dc.contributor.author
Ailliot, Pierre
dc.contributor.author
Bocquet, Marc
dc.contributor.author
Carrassi, Alberto
dc.contributor.author
Miyoshi, Takemasa
dc.contributor.author
Pulido, Manuel Arturo
dc.contributor.author
Zhen, Yicun
dc.date.available
2021-08-13T17:05:37Z
dc.date.issued
2020-10
dc.identifier.citation
Tandeo, Pierre; Ailliot, Pierre; Bocquet, Marc; Carrassi, Alberto; Miyoshi, Takemasa; et al.; A review of innovation-based methods to jointly estimate model and observation error covariance matrices in ensemble data assimilation; Amer Meteorological Soc; Monthly Weather Review; 148; 10; 10-2020; 3973-3994
dc.identifier.issn
0027-0644
dc.identifier.uri
http://hdl.handle.net/11336/138281
dc.description.abstract
Data assimilation combines forecasts from a numerical model with observations. Most of the current data assimilation algorithms consider the model and observation error terms as additive Gaussian noise, specified by their covariance matrices Q and R, respectively. These error covariances, and specifically their respective amplitudes, determine the weights given to the background (i.e., the model forecasts) and to the observations in the solution of data assimilation algorithms (i.e., the analysis). Consequently,Qand R matrices significantly impact the accuracy of the analysis. This review aims to present and to discuss, with a unified framework, different methods to jointly estimate the Q and R matrices using ensemble-based data assimilation techniques. Most of the methods developed to date use the innovations, defined as differences between the observations and the projection of the forecasts onto the observation space. These methods are based on two main statistical criteria: 1) the method of moments, in which the theoretical and empirical moments of the innovations are assumed to be equal, and 2) methods that use the likelihood of the observations, themselves contained in the innovations. The reviewed methods assume that innovations are Gaussian random variables, although extension to other distributions is possible for likelihood-based methods. The methods also show some differences in terms of levels of complexity and applicability to high-dimensional systems. The conclusion of the review discusses the key challenges to further develop estimation methods for Q and R. These challenges include taking into account time-varying error covariances, using limited observational coverage, estimating additional deterministic error terms, or accounting for correlated noise.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Amer Meteorological Soc
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
DATA ASSIMILATION
dc.subject
UNCERTAINTY QUANTIFICATION
dc.subject
MODEL ERROR
dc.subject.classification
Meteorología y Ciencias Atmosféricas
dc.subject.classification
Ciencias de la Tierra y relacionadas con el Medio Ambiente
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
A review of innovation-based methods to jointly estimate model and observation error covariance matrices in ensemble data assimilation
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2020-12-04T19:36:01Z
dc.identifier.eissn
1520-0493
dc.journal.volume
148
dc.journal.number
10
dc.journal.pagination
3973-3994
dc.journal.pais
Estados Unidos
dc.journal.ciudad
Boston
dc.description.fil
Fil: Tandeo, Pierre. Riken Food Co. Ltd.; Japón. Centre National de la Recherche Scientifique; Francia
dc.description.fil
Fil: Ailliot, Pierre. Universite de Bretagne Occidentale; Francia
dc.description.fil
Fil: Bocquet, Marc. Universite de Paris; Francia
dc.description.fil
Fil: Carrassi, Alberto. Utrecht University; Países Bajos. University of Reading; Reino Unido
dc.description.fil
Fil: Miyoshi, Takemasa. Riken Food Co. Ltd.; Japón
dc.description.fil
Fil: Pulido, Manuel Arturo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Modelado e Innovación Tecnológica. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Modelado e Innovación Tecnológica; Argentina
dc.description.fil
Fil: Zhen, Yicun. Centre National de la Recherche Scientifique; Francia
dc.journal.title
Monthly Weather Review
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://journals.ametsoc.org/mwr/article/148/10/3973/354310/A-Review-of-InnovationBased-Methods-to-Jointly
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1175/MWR-D-19-0240.1
Archivos asociados