Mostrar el registro sencillo del ítem
dc.contributor.author
Yannibelli, Virginia Daniela
dc.contributor.author
Pacini Naumovich, Elina Rocío
dc.contributor.author
Monge, David
dc.contributor.author
Mateos Diaz, Cristian Maximiliano
dc.contributor.author
Rodríguez, Guillermo Horacio
dc.date.available
2021-08-12T12:22:26Z
dc.date.issued
2020-08
dc.identifier.citation
Yannibelli, Virginia Daniela; Pacini Naumovich, Elina Rocío; Monge, David; Mateos Diaz, Cristian Maximiliano; Rodríguez, Guillermo Horacio; A comparative analysis of NSGA-II and NSGA-III for autoscaling parameter sweep experiments in the cloud; IOS Press; Scientific Programming; 2020; 8-2020; 1-17
dc.identifier.issn
1058-9244
dc.identifier.uri
http://hdl.handle.net/11336/138197
dc.description.abstract
The Cloud Computing paradigm is focused on the provisioning of reliable and scalable virtual infrastructures that deliver execution and storage services. This paradigm is particularly suitable to solve resource-greedy scientific computing applications such as parameter sweep experiments (PSEs). Through the implementation of autoscalers, the virtual infrastructure can be scaled up and down by acquiring or terminating instances of virtual machines (VMs) at the time that application tasks are being scheduled. In this paper, we extend an existing study centered in a state-of-the-art autoscaler called multiobjective evolutionary autoscaler (MOEA). MOEA uses a multiobjective optimization algorithm to determine the set of possible virtual infrastructure settings. In this context, the performance of MOEA is greatly influenced by the underlying optimization algorithm used and its tuning. Therefore, we analyze two well-known multiobjective evolutionary algorithms (NSGA-II and NSGA-III) and how they impact on the performance of the MOEA autoscaler. Simulated experiments with three real-world PSEs show that MOEA gets significantly improved when using NSGA-III instead of NSGA-II due to the former provides a better exploitation versus exploration trade-off.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
IOS Press
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
AUTOSCALING
dc.subject
CLOUD COMPUTING
dc.subject
METAHEURISTICS
dc.subject.classification
Ciencias de la Computación
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
A comparative analysis of NSGA-II and NSGA-III for autoscaling parameter sweep experiments in the cloud
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2021-07-30T18:22:18Z
dc.journal.volume
2020
dc.journal.pagination
1-17
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Yannibelli, Virginia Daniela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina
dc.description.fil
Fil: Pacini Naumovich, Elina Rocío. Universidad Nacional de Cuyo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina
dc.description.fil
Fil: Monge, David. Universidad Nacional de Cuyo; Argentina
dc.description.fil
Fil: Mateos Diaz, Cristian Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina
dc.description.fil
Fil: Rodríguez, Guillermo Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina
dc.journal.title
Scientific Programming
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.hindawi.com/journals/sp/2020/4653204/
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1155/2020/4653204
Archivos asociados