Mostrar el registro sencillo del ítem

dc.contributor.author
Broz, Diego Ricardo  
dc.contributor.author
Olivera, Alejandro  
dc.contributor.author
Viana Céspedes, Víctor  
dc.contributor.author
Rossit, Daniel Alejandro  
dc.date.available
2021-08-11T23:10:23Z  
dc.date.issued
2017  
dc.identifier.citation
Review of Data mining applications in forestry sector; First International Conference on Agro Big Data and Decision Support Systems in Agriculture; Montevideo; Uruguay; 2017; 143-146  
dc.identifier.uri
http://hdl.handle.net/11336/138182  
dc.description.abstract
Modern technology makes possible to collect large amount of data that can be processed and transformed invaluable information for several human activities. Forest industry particularly can take advantage of suchtechnology because of modern forest harvesters are equipped with a system for data collection and communicationcalled StanForD. Data mining allows users to process large databases to determine trends and patterns. In thisextended abstract we present a brief revision of the literature dedicated to the issue and, also, we indicatesynthetically future research directions that could be useful for forest operations management. Some DMtechniques are artificial neural network and decision tree and they are used to perform association, classificationand clustering. Nonetheless, data mining techniques have been successfully applied to several fields, e.g. industry,marketing, sociology, economy, agriculture and environmental sciences.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Universidad de la República  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
BIG DATA  
dc.subject
FOREST  
dc.subject
REVIEW  
dc.subject.classification
Otras Ingenierías y Tecnologías  
dc.subject.classification
Otras Ingenierías y Tecnologías  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Review of Data mining applications in forestry sector  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.type
info:eu-repo/semantics/conferenceObject  
dc.type
info:ar-repo/semantics/documento de conferencia  
dc.date.updated
2021-06-22T13:48:57Z  
dc.journal.pagination
143-146  
dc.journal.pais
Uruguay  
dc.journal.ciudad
Montevideo  
dc.description.fil
Fil: Broz, Diego Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Misiones. Facultad de Ciencias Forestales; Argentina  
dc.description.fil
Fil: Olivera, Alejandro. Universidad de la República; Uruguay  
dc.description.fil
Fil: Viana Céspedes, Víctor. Universidad de la República; Uruguay  
dc.description.fil
Fil: Rossit, Daniel Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.wikicfp.com/cfp/servlet/event.showcfp?eventid=63228&copyownerid=64337  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.bigdssagro.udl.cat/?q=node/75  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.bigdssagro.udl.cat/sites/default/files/Proceedings_bigDSSagro2017.pdf  
dc.conicet.rol
Autor  
dc.conicet.rol
Autor  
dc.conicet.rol
Autor  
dc.conicet.rol
Autor  
dc.coverage
Internacional  
dc.type.subtype
Conferencia  
dc.description.nombreEvento
First International Conference on Agro Big Data and Decision Support Systems in Agriculture  
dc.date.evento
2017-09-27  
dc.description.ciudadEvento
Montevideo  
dc.description.paisEvento
Uruguay  
dc.type.publicacion
Book  
dc.description.institucionOrganizadora
Universidad de la República  
dc.source.libro
Proceedings of the First International Conference on Agro Big Data and Decision Support Systems in Agriculture  
dc.date.eventoHasta
2017-09-29  
dc.type
Conferencia