Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Evento

Assessing Causality Structures learned from Digital Text Media

Maisonnave, MarianoIcon ; Delbianco, Fernando AndrésIcon ; Tohmé, Fernando Abel; Maguitman, Ana Gabriela; Milios, Evangelos E.
Tipo del evento: Simposio
Nombre del evento: DocEng '20: ACM Symposium on Document Engineering 2020
Fecha del evento: 29/09/2020
Institución Organizadora: Association for Computing Machinery;
Título del Libro: DocEng '20: Proceedings of the ACM Symposium on Document Engineering
Editorial: Association for Computing Machinery
ISBN: 978-1-4503-8000-3
Idioma: Inglés
Clasificación temática:
Ciencias de la Computación

Resumen

In this paper we describe a framework to uncover potential causal relations between event mentions from streaming text of news media. This framework relies on a dataset of manually labeled events to train a recurrent neural network for event detection. It then creates a time series of event clusters, where clusters are based on BERT contextual word embedding representations of the identified events. Using these time series dataset, we assess four methods based on Granger causality for inferring causal relations. Granger causality is a statistical concept of causality that is based on forecasting. It states that a cause occurs before the effect, and the cause produces unique changes in the effect, so past values of the cause help predict future values of the effect. The four analyzed methods are the pairwise Granger test, VAR(1), BigVar and SiMoNe. The framework is applied to the New York Times dataset, which covers news for a period of 246 months. This preliminary analysis delivers important insights into the nature of each method, identifies differences and commonalities, and points out some of their strengths and weaknesses.
Palabras clave: GRANGER CAUSALITY , EVENT DETECTION , TIMES SERIES
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.377Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/138139
URL: https://dl.acm.org/doi/10.1145/3395027.3419594
DOI: http://dx.doi.org/10.1145/3395027.3419594
Colecciones
Eventos(INMABB) [43]
Eventos de INST.DE MATEMATICA BAHIA BLANCA (I)
Citación
Assessing Causality Structures learned from Digital Text Media; DocEng '20: ACM Symposium on Document Engineering 2020; New York; Estados Unidos; 2020; 1-4
Compartir
Altmétricas
 
Estadísticas
Visualizaciones: 40
Descargas: 116

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • Twitter
  • Instagram
  • YouTube
  • Sound Cloud

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

Ministerio
https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES