Artículo
Parallel hyper-heuristics for process engineering optimization
Fecha de publicación:
10/2021
Editorial:
Pergamon-Elsevier Science Ltd
Revista:
Computers and Chemical Engineering
ISSN:
0098-1354
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
This paper presents the general framework of a parallel cooperative hyper-heuristic optimizer (PCHO) to solve systems of nonlinear algebraic equations with equality and inequality constraints. The algorithm comprises the classical metaheuristics called Genetic Algorithms, Simulated Annealing and Particle Swarm Optimization, whose parameters are adaptively chosen during the executions. A Master-Worker architecture was designed and implemented, where the Master processor ranks the solution candidates informed by the metaheuristics and immediately communicates the most promising candidate to update all Workers. Algorithmic performance was tested with general models, most of them corresponding to PSE process systems. The results confirmed the efficiency of the proposed approach since both online parameter retuning and parallel processing sped up the search.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - BAHIA BLANCA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - BAHIA BLANCA
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - BAHIA BLANCA
Articulos(PLAPIQUI)
Articulos de PLANTA PILOTO DE INGENIERIA QUIMICA (I)
Articulos de PLANTA PILOTO DE INGENIERIA QUIMICA (I)
Citación
Oteiza, Paola Patricia; Ardenghi, Juan Ignacio; Brignole, Nélida Beatriz; Parallel hyper-heuristics for process engineering optimization; Pergamon-Elsevier Science Ltd; Computers and Chemical Engineering; 153; 1074; 10-2021; 1-13
Compartir
Altmétricas