Artículo
A weighted setting for the numerical approximation of the Poisson problem with singular sources
Fecha de publicación:
02/2020
Editorial:
Society for Industrial and Applied Mathematics
Revista:
Siam Journal On Numerical Analysis
ISSN:
0036-1429
e-ISSN:
1095-7170
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We consider the approximation of Poisson type problems where the source is given by a singular measure and the domain is a convex polygonal or polyhedral domain. First, we prove the well-posedness of the Poisson problem when the source belongs to the dual of a weighted Sobolev space where the weight belongs to the Muckenhoupt class. Second, we prove the stability in weighted norms for standard finite element approximations under the quasi-uniformity assumption on the family of meshes.
Palabras clave:
FINITE ELEMENT METHODS
,
POISSON PROBLEM
,
WEIGHTED SOBOLEV SPACES
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Drelichman, Irene; Duran, Ricardo Guillermo; Ojea, Ignacio; A weighted setting for the numerical approximation of the Poisson problem with singular sources; Society for Industrial and Applied Mathematics; Siam Journal On Numerical Analysis; 58; 1; 2-2020; 590-606
Compartir
Altmétricas