Artículo
A limiting problem for local/non-local p-Laplacians with concave–convex nonlinearities
Fecha de publicación:
12/2020
Editorial:
Birkhauser Verlag Ag
Revista:
Zeitschrift Fur Angewandte Mathematik Und Physik
ISSN:
0044-2275
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In this manuscript, we deal with an equation involving a combination of quasi-linear elliptic operators of local and non-local nature with p-structure, and concave?convex nonlinearities. The prototypical model is given by {-Δ_pu+(-)_p^su=λ_pu^q(x)+ur(x)inΩ, u(x)>0inΩ, u(x)=0onR^n\Ω, where Ω ⊂ R^n is a bounded and smooth domain, s∈ (0 , 1) , 2 ≤ p< ∞, 0 < q(p) < p- 1 < r(p) < ∞ and 0 < λp< ∞, being Δ p and (-Δ)ps the p-Laplace and fractional p-Laplace operators, respectively. We study existence and global uniform and explicit boundedness results to weak solutions. Then, we perform an asymptotic analysis for the limit of a family of weak solutions {u_p}_p≥2^ as p→ ∞, which converges, up to a subsequence (under suitable assumptions on the problem data), to a non-trivial profile with uniform and explicit bounds, enjoying of a universal Lipschitz modulus of continuity, and verifying a nonlinear limiting PDE in the viscosity sense, which exhibits both local/non-local character.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
da Silva, João Vitor; Salort, Ariel Martin; A limiting problem for local/non-local p-Laplacians with concave–convex nonlinearities; Birkhauser Verlag Ag; Zeitschrift Fur Angewandte Mathematik Und Physik; 71; 6; 12-2020; 1-27
Compartir
Altmétricas