Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Design of Fe-based bulk metallic glasses for maximum amorphous diameter (Dmax) using machine learning models

Mastropietro, Daniel G.; Moya, Javier AlbertoIcon
Fecha de publicación: 15/02/2021
Editorial: Elsevier Science
Revista: Computational Materials Science
ISSN: 0927-0256
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ingeniería de los Materiales

Resumen

The development of bulk metallic glasses (BMGs) is a topic of current interest due to the unique set of properties that distinguish them from their crystalline counterpart and make them attractive in industrial applications as both structural and functional materials. Currently, a great effort is being made to model and quantify the glass forming ability of the amorphous in an alloy, as well as in tuning their properties in view of the final application of the material. In this work we have used two machine learning techniques, multiple linear regression and tree boosting, to predict the maximum amorphous diameter of Fe-based BMGs, exclusively from the alloy’s chemical composition. The modeĺ s predictive power is characterised by a predicted-R2 of 0.71 (predicted-R = 0.84) and a training-R2 of 0.90 (training-R = 0.95) over a set of 480 alloys present in the dataset. Learning curves are employed as part of a comparative prediction analysis of the two techniques and to help decide the modelling aspects on which effort should be invested in the future. Selected examples using pseudo-ternary diagrams for the design of new Fe-based BMGs are presented, where the potential of the model becomes clear.
Palabras clave: BULK METALLIC GLASSES, MACHINE LEARNING , GLASS-FORMING ABILITY , MATERIALS DESIGN , TREE BOOSTING
Ver el registro completo
 
Archivos asociados
Tamaño: 3.079Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/138052
DOI: http://dx.doi.org/10.1016/j.commatsci.2020.110230
URL: https://www.sciencedirect.com/science/article/pii/S0927025620307217?via%3Dihub
Colecciones
Articulos(CCT - SALTA-JUJUY)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - SALTA-JUJUY
Citación
Mastropietro, Daniel G.; Moya, Javier Alberto; Design of Fe-based bulk metallic glasses for maximum amorphous diameter (Dmax) using machine learning models; Elsevier Science; Computational Materials Science; 188; 15-2-2021; 1-12
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES