Mostrar el registro sencillo del ítem

dc.contributor.author
Schustik, Santiago  
dc.contributor.author
Cravero, Fiorella  
dc.contributor.author
Ponzoni, Ignacio  
dc.contributor.author
Diaz, Monica Fatima  
dc.date.available
2021-08-04T12:47:14Z  
dc.date.issued
2021-06-15  
dc.identifier.citation
Schustik, Santiago; Cravero, Fiorella; Ponzoni, Ignacio; Diaz, Monica Fatima; Polymer informatics: Expert-in-the-loop in QSPR modeling of refractive index; Elsevier; Computational Materials Science; 194; 15-6-2021; 1-3, 110460  
dc.identifier.issn
0927-0256  
dc.identifier.uri
http://hdl.handle.net/11336/137744  
dc.description.abstract
Refractive index (RI) is a highly relevant property for the design of new polymeric materials for very specific applications in the telecommunications industry, medicine, and analytical chemistry, among many others. A particular case is that of plastic optical fibers, in which the information is transmitted by photons and then RI takes center stage. Therefore, the modeling and prediction of this property play a key role when characterizing and designing materials for these important industries. Over the last decades, the use of Machine Learning (ML) algorithms in the modeling of properties for the design of new materials has been consolidated thanks to the gradual increase in the available databases. In particular, the development of Quantitative Structure-Property Relationship (QSPR) models has benefited from these emerging technologies, providing the possibility of generating in silico testing strategies applicable to the early stages of the design of new materials. However, in many cases, it has been observed that using ML algorithms in a fully automatic way, without human intervention in the QSPR model design process, tend to generate black-box models that have a difficult interpretation and can lose sight about relevant aspects that require both criteria and an expert's knowledge in the chemical domain. For this reason, interactive ML methodologies that combine computational outputs with experts’ knowledge, usually known as expert-in-the-loop strategies, are becoming more frequent. In this article, we present the design of QSPR models for RI modeling following two different approaches, a black-box ML methodology and an Interactive Machine Learning (IML) methodology with expert-in-the-loop, from a database whose curation is also described in the present work. In this regard, visual analytics strategies were used to capture the expert's knowledge, facilitating an effective and rapid interaction between the outputs provided by ML and the chemical analyst. In addition, we contrast the best models obtained by both approaches against two other predictive models for RI estimation reported in the literature, achieving promising performances in terms of cardinality and accuracy when the expert interacts during modeling. In summary, the obtained results allow us to claim that the expert-in-the-loop approach provides QSPR models with better generalizability properties and more interpretable from a physicochemical point of view, without losing accuracy. Finally, in addition to providing high quality QSPR models to predict the RI of polymeric materials, the present work lays the foundation for defining an effective methodology to incorporate experts’ knowledge in the design of other material properties.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
EXPERT-IN-THE-LOOP  
dc.subject
INTERACTIVE MACHINE LEARNING  
dc.subject
POLYMER INFORMATICS  
dc.subject
QSPR  
dc.subject
REFRACTIVE INDEX  
dc.subject
VISUAL ANALYTICS  
dc.subject.classification
Ciencias de la Computación  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.subject.classification
Otras Ingeniería de los Materiales  
dc.subject.classification
Ingeniería de los Materiales  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Polymer informatics: Expert-in-the-loop in QSPR modeling of refractive index  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2021-06-10T19:20:31Z  
dc.journal.volume
194  
dc.journal.pagination
1-3, 110460  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Schustik, Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas; Argentina  
dc.description.fil
Fil: Cravero, Fiorella. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina  
dc.description.fil
Fil: Ponzoni, Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina  
dc.description.fil
Fil: Diaz, Monica Fatima. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería Química; Argentina  
dc.journal.title
Computational Materials Science  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.commatsci.2021.110460  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0927025621001853