Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

When classification accuracy is not enough: Explaining news credibility assessment

Przybyla, Piotr; Soto, Axel JuanIcon
Fecha de publicación: 12/09/2021
Editorial: Pergamon-Elsevier Science Ltd
Revista: Information Processing & Management
ISSN: 0306-4573
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Computación

Resumen

Dubious credibility of online news has become a major problem with negative consequences for both readers and the whole society. Despite several efforts in the development of automatic methods for measuring credibility in news stories, there has been little previous work focusing on providing explanations that go beyond a black-box decision or score. In this work, we use two machine learning approaches for computing a credibility score for any given news story: one is a linear method trained on stylometric features and the other one is a recurrent neural network. Our goal is to study whether we can explain the rationale behind these automatic methods and improve a reader's confidence in their credibility assessment. Therefore, we first adapted the classifiers to the constraints of a browser extension so that the text can be analysed while browsing online news. We also propose a set of interactive visualisations to explain to the user the rationale behind the automatic credibility assessment. We evaluated our adapted methods by means of standard machine learning performance metrics and through two user studies. The adapted neural classifier showed better performance on the test data than the stylometric classifier, despite the latter appearing to be easier to interpret by the participants. Also, users were significantly more accurate in their assessment after they interacted with the tool as well as more confident with their decisions.
Palabras clave: CREDIBILITY , FAKE NEWS , NATURAL LANGUAGE PROCESSING , TEXT CLASSIFICATION , VISUAL ANALYTICS
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 3.556Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution 2.5 Unported (CC BY 2.5)
Identificadores
URI: http://hdl.handle.net/11336/137736
URL: https://www.sciencedirect.com/science/article/pii/S0306457321001412
DOI: http://dx.doi.org/10.1016/j.ipm.2021.102653
Colecciones
Articulos (ICIC)
Articulos de INSTITUTO DE CS. E INGENIERIA DE LA COMPUTACION
Citación
Przybyla, Piotr; Soto, Axel Juan; When classification accuracy is not enough: Explaining news credibility assessment; Pergamon-Elsevier Science Ltd; Information Processing & Management; 58; 5; 12-9-2021; 1-20; 102653
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES