Artículo
On the illposedness and stability of the relativistic heat equation
Fecha de publicación:
05/2020
Editorial:
American Institute of Physics
Revista:
Journal of Mathematical Physics
ISSN:
0022-2488
e-ISSN:
1089-7658
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In this article, we analyze, in terms of a simple example, the incompatibility of parabolic evolution and general covariance. For this, we introduce a unit time-like four-vector and study the simplest heat flux equation with respect to it. In cases where this vector field is surface forming, then the local high wave number limit shows well posedness, but as soon as that property is lost, the Cauchy problem becomes ill-posed. We also discuss how the Maxwell-Cattaneo type modification of the system renders it well posed and link the amplitude of the modification, which is related to the so-called second wave speed of the system, to the size of the failure of surface orthogonality.
Palabras clave:
Bien puesto
,
Termodinámica relativista
,
Disipación
,
Covariancia
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IFEG)
Articulos de INST.DE FISICA ENRIQUE GAVIOLA
Articulos de INST.DE FISICA ENRIQUE GAVIOLA
Citación
García-Perciante, A. L.; Reula, Oscar Alejandro; On the illposedness and stability of the relativistic heat equation; American Institute of Physics; Journal of Mathematical Physics; 61; 5; 5-2020; 1-8
Compartir
Altmétricas