Artículo
Generic instabilities in the relativistic Chapman–Enskog heat conduction law
Fecha de publicación:
10/2020
Editorial:
Springer
Revista:
Journal of Statistical Physics
ISSN:
0022-4715
e-ISSN:
1572-9613
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We address the well-posedness of the Cauchy problem corresponding to the relativistic first-order fluid equations, coupled with the Chapman–Enskog heat-flux constitutive relation. We show that the system of equations that results by considering linear perturbations with respect to a generic time direction is non-hyperbolic, since there are modes that may arbitrarily grow as wave-number increases. Then, using a result provided by Strang (J Differ Equ 2:107–114, 1966), we conclude that the full non-linear first-order theory is also non-hyperbolic, thus admitting an ill-posed initial-value formulation. Unlike Eckart’s theory, these instabilities are not present when the time direction is aligned with the fluid’s direction. However, since in general the fluid velocity is not surface-forming, the instability can only be avoided in the particular case where no rotation is present.
Palabras clave:
Eckart
,
Well-posed
,
Chapman-Enskog
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IFEG)
Articulos de INST.DE FISICA ENRIQUE GAVIOLA
Articulos de INST.DE FISICA ENRIQUE GAVIOLA
Citación
García-Perciante, Ana L.; Rubio, Marcelo Enrique; Reula, Oscar Alejandro; Generic instabilities in the relativistic Chapman–Enskog heat conduction law; Springer; Journal of Statistical Physics; 181; 1; 10-2020; 246-262
Compartir
Altmétricas