Mostrar el registro sencillo del ítem

dc.contributor.author
Li, Hongbo B. T.  
dc.contributor.author
Schropp, Ruud E. I.  
dc.contributor.author
Rubinelli, Francisco Alberto  
dc.date.available
2017-03-09T21:01:46Z  
dc.date.issued
2010-07  
dc.identifier.citation
Li, Hongbo B. T.; Schropp, Ruud E. I.; Rubinelli, Francisco Alberto; Photogating effect as a defect probe in nanocrystalline silicon cells; American Institute Of Physics; Journal of Applied Physics; 108; 1; 7-2010; 145091-145099  
dc.identifier.issn
0021-8979  
dc.identifier.uri
http://hdl.handle.net/11336/13706  
dc.description.abstract
The measurement of the spectrally resolved collection efficiency is of great importance in solar cell characterization. Under standard conditions the bias light is a solar simulator or a light source with a similar broadband irradiation spectrum. When a colored blue or red bias light is used instead, an enhanced collection efficiency effect, in the literature known as the photogating effect, can be observed under certain conditions. While most of the published reports on such effect were on solar cells with amorphous silicon based absorber layers, we have shown that the enhanced collection efficiency could be also present in thin film silicon solar cells where hydrogenated nanocrystalline silicon (nc-Si:H) is used as the absorber layer. In this article we present detailed experimental results and simulations aiming at a better understanding of this phenomenon. We show that the collection efficiency is strongly dependent on the intensity of bias light and the intensity of the monochromatic light. These experimental results are consistent with the computer predictions made by our code. We also show that the photogating effect is greatly enhanced when nanocrystalline silicon cells are built with an improperly doped p-layer or with a defective p/i interface region due to the reduced internal electric field present in such cells. The existence of this effect further proves that carrier transport in a nc-Si:H solar cell with an i-layer made close to the phase transition regime is influenced to a large extent by drift transport. The study of this effect is proposed as an alternative approach to gain a deeper understanding about the carrier transport scenarios in thin film solar cells, especially nanocrystalline silicon solar cells.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Institute Of Physics  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Photogating Effect  
dc.subject
Microcristalline Silicon  
dc.subject
Solar Cells  
dc.subject
Internal Gain  
dc.subject.classification
Ingeniería Eléctrica y Electrónica  
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Photogating effect as a defect probe in nanocrystalline silicon cells  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2017-02-24T19:31:02Z  
dc.journal.volume
108  
dc.journal.number
1  
dc.journal.pagination
145091-145099  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Nueva York  
dc.description.fil
Fil: Li, Hongbo B. T.. Utrecht Univeristy; Países Bajos  
dc.description.fil
Fil: Schropp, Ruud E. I.. Utrecht Univeristy; Países Bajos  
dc.description.fil
Fil: Rubinelli, Francisco Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); Argentina. Utrecht Univeristy; Países Bajos  
dc.journal.title
Journal of Applied Physics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1063/1.3437393  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://aip.scitation.org/doi/10.1063/1.3437393