Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Clinical diagnosis of COVID-19. A multivariate logistic regression analysis of symptoms of COVID-19 at presentation

Fleitas, Pedro EmanuelIcon ; Paz, Jorge AugustoIcon ; Simoy, Mario IgnacioIcon ; Vargas, Carlos; Cimino, Rubén OscarIcon ; Krolewiecki, Alejandro JavierIcon ; Aparicio, Juan PabloIcon
Fecha de publicación: 07/2021
Editorial: European Academy of HIV/AIDS and Infectious Diseases
Revista: Germs
ISSN: 2248-2997
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Medicina Clínica

Resumen

Introduction The objective of this cross-sectional study was to describe the main symptoms associated with COVID-19, and their diagnostic characteristics, to aid in the clinical diagnosis. Methods An analysis of all patients diagnosed by RT-PCR for SARS-CoV-2 between April and May 2020 in Argentina was conducted. The data includes clinical and demographic information from all subjects at the time of presentation (n=67318, where 12% were positive for SARS-CoV-2). The study population was divided into four age groups: pediatric (0-17 years), young adults (18-44 years), adults (45-64 years), and elderly (65-103 years). Multivariate logistic regression was used to measure the association of all symptoms and to create a diagnostic model based on symptoms.Results Symptoms associated with COVID-19 were anosmia, dysgeusia, headache, low-grade fever,odynophagia, and malaise. However, the presentation of these symptoms was different between thedifferent age groups. In turn, at the time of presentation, the symptoms associated with respiratoryproblems (chest pain, abdominal pain, and dyspnea) had a negative association with COVID-19 or did not present statistical relevance. On the other hand, the model based on 16 symptoms, age and sex, presented a sensitivity of 80% and a specificity of 46%.Conclusions There were significant differences between the different age groups. Additionally, therewere interactions between different symptoms that were highly associated with COVID-19. Finally, our findings showed that a regression model based on multiple factors (age, sex, interaction between symptoms) can be used as an accessory diagnostic method or a rapid screening of suspected COVID-19 cases.
Palabras clave: COVID-19 , SYMPTOMS , CLINICAL DIAGNOSIS.
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 584.7Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/136995
URL: http://www.germs.ro/en/Homepage/
DOI: http://dx.doi.org/ 10.18683/germs.2021.1259
Colecciones
Articulos(CCT - SALTA-JUJUY)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - SALTA-JUJUY
Citación
Fleitas, Pedro Emanuel; Paz, Jorge Augusto; Simoy, Mario Ignacio; Vargas, Carlos; Cimino, Rubén Oscar; et al.; Clinical diagnosis of COVID-19. A multivariate logistic regression analysis of symptoms of COVID-19 at presentation; European Academy of HIV/AIDS and Infectious Diseases; Germs; 11; 2; 7-2021; 221-237
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES