Mostrar el registro sencillo del ítem

dc.contributor.author
Ubal, Sebastian  
dc.contributor.author
Harrison, C. H.  
dc.contributor.author
Grassia, P.  
dc.contributor.author
Korchinsky, W. J.  
dc.date.available
2017-03-09T20:08:25Z  
dc.date.issued
2010-05  
dc.identifier.citation
Ubal, Sebastian; Harrison, C. H.; Grassia, P.; Korchinsky, W. J.; Numerical simulation of mass transfer in circulating drops; Elsevier; Chemical Engineering Science; 65; 10; 5-2010; 2934-2956  
dc.identifier.issn
0009-2509  
dc.identifier.uri
http://hdl.handle.net/11336/13698  
dc.description.abstract
Numerical simulations of mass transfer are performed for a circulating liquid drop with applications in liquid–liquid extraction. Simulation parameters are chosen for a multi-component ternary system acetone–methanol–benzene. The drop circulation pattern is estimated via a truncated Galerkin representation of the drop streamfunction. Fickian diffusivities for multi-component mass transfer are obtained via Maxwell–Stefan theory with thermodynamic corrections. The advection–diffusion equations governing mass transfer are solved via two distinct numerical methods: a finite difference scheme (using the alternating direction implicit method) and a finite element scheme. Good agreement was obtained between both schemes. Simulation results are presented for a Reynolds number (Re=30) and for a selection of Peclet numbers (Pe=100, 1000 and 10 000, thereby giving insight into the effects of increasing Peclet number). The numerical simulations of the full advection–diffusion equations are compared against predictions of a rigid drop model (i.e. without circulation) and also against predictions of a semi-analytical boundary layer model developed by Uribe-Ramirez and Korchinsky. Results for bulk mass fractions reveal that the rigid drop model predictions evolve too slowly, while the boundary layer model predictions evolve much more quickly than the numerical simulations. Advection–diffusion simulation results for the evolution of mass fractions at selected individual locations in the drop show that points on streamlines nearest to the drop surface and/or drop axis evolve fastest, while those closest to the drop internal stagnation point evolve slowest. Corroborated by contour plots of component concentrations throughout the drop at selected times, this supports a picture whereby mass fractions become roughly uniform along individual streamlines, but mass is transferred diffusively from streamline to streamline.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  
dc.subject
Mass Transfer  
dc.subject
Circulating Drop Model  
dc.subject
Convective Transport  
dc.subject
High Peclet Number  
dc.subject
Cross-Stream Diffusion  
dc.subject
Boundary Layers  
dc.subject
Mathematical Modelling  
dc.subject
Numerical Analysis  
dc.subject
Simulation  
dc.subject
Liquid-Liquid Extraction  
dc.subject.classification
Ingeniería de Procesos Químicos  
dc.subject.classification
Ingeniería Química  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Numerical simulation of mass transfer in circulating drops  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2017-02-24T19:31:08Z  
dc.journal.volume
65  
dc.journal.number
10  
dc.journal.pagination
2934-2956  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Ámsterdam  
dc.description.fil
Fil: Ubal, Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química (i); Argentina  
dc.description.fil
Fil: Harrison, C. H.. University Of Manchester; Reino Unido  
dc.description.fil
Fil: Grassia, P.. University Of Manchester; Reino Unido  
dc.description.fil
Fil: Korchinsky, W. J.. University Of Manchester; Reino Unido  
dc.journal.title
Chemical Engineering Science  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0009250910000382  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.ces.2010.01.021